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ABSTRACT 

This paper presents two studies in the methods of problem-based learning (PBL), where 

students work in small groups to explore specific problems under the guidance of an instructor.  

PBL has proven to be highly-effective in engineering education, but there is still room to 

improve.  PBL opponents charge that the unstructured learning environment characteristic of 

PBL is contrary to cognitive theories on how people learn.  Proponents of PBL argue that it is 

designed to offer just enough structure that students will succeed at learning the material.  

Studies by Schmidt et al. (2007) suggest that the use of “scaffolds,” structures that support the 

conceptual learning process early-on, but are gradually removed later, can greatly help when 

students first engage in PBL.   

In this paper, the design and use of scaffolds was tested using two scientific studies in an 

entry-level engineering course.  A total of 94 students participated in the research.  In the first 

study, two different worksheets (hard scaffolds) were evaluated; one provided far more structure 

than the other in conducting the lab procedure and calculating results.  After preparing a full lab 

report, students were given a post-lab examination.  The results of this examination indicate that 

the highly-structured scaffolding was significantly more effective at facilitating the learning 

outcome.  In the second study, the use of lectures and supplementary text (soft scaffolds) was 

evaluated alongside the improved hard scaffold developed for study one.  Students were either 

given (a) no lecture or supplementary text, (b) lecture/text before lab, or (c) lecture/text 

following lab.  The second study found no significant difference across groups. 

When taken together, these results indicate that the process of PBL is effective at teaching 

students difficult engineering concepts.  Specifically, they show that it is the actual process of 

studying a problem where students learn the most, in contrast to being “fed” information from a 

lecture or textbook.  The results further indicate that students must be provided with a highly-

structure scaffold to achieve the highest learning outcome.  While further study is needed, the 

implication for engineering course design is that lectures should be reduced or eliminated in 

favor of more hands-on problem solving encounters. 
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1. INTRODUCTION 

What distinguishes man as a species is not only his capacity for learning, but 

for teaching as well (Wood, Bruner, & Ross, 1976). 

At today’s modern academic institutions, teachers have proven capable of carrying out a 

remarkable level of instruction.  Even so, the question “are we teaching well enough” is often 

heard, particularly in engineering programs.  Haag, et al. (2011) observe that “the current work 

environment requires engineers to be global citizens, as well as aspirational, ethical leaders.”  

Are our educational programs able to meet this requirement?  Is it even possible that these skills 

can be “taught” in the fundamental sense?  Others question the educational process as a whole, 

blaming it for increasing attrition rates from engineering programs (Lord & Camacho, 2007).  

One might even ask what defines a “good” educational process. 

For years, a significant decline in the number of students graduating with degrees in STEM 

(Science, Technology, Engineering, and Math) fields has been observed (Besterfield-Sacre et al., 

1997; Beaufait, 1991; Astin, 1993).  Despite numerous attempts to understand the problem 

(Heckel, 1996; Hermond, 1995; Besterfield-Sacre et al., 1997, and many others), we still do not 

have a reasonable understanding as to why this trend persists.  Perhaps our primary schools are 

not placing enough emphasis on science and its practice (Lee & Burkam, 1996).  Perhaps 

students are not receiving high-quality instruction from their teachers and are arriving at college 

unprepared (Smith, 2007).  Perhaps our society has come to value ease of passage over hard 

work (Hewitt & Seymour, 1992).  Regardless of the cause, it cannot be denied that first- and 

second-year engineering students leave their respective programs at an alarming rate, and that 

this trend persists across all engineering disciplines at all institutions.  (Besterfield-Sacre et al., 

2013).  It has even been suggested that this trend poses a serious risk to the United States’ global 

standing and security (Nusca, 2010). 

Felder (1993) argues that more effective teaching methods in introductory courses will result 

in a higher retention rate of early students.  One of these methods is known as Problem-Based 

Learning (PBL), where students work in small groups to explore a specially-designed problem 

under the guidance of an instructor.  They observe that such collaborative learning environments 

hold promise but “most experiments with these methods have been carried out on a one-shot 

basis: a professor tries a new method in a course…many students respond well to the new 

method; and most of them never see anything like it again” (Felder, 1993).   

The observations by Felder and others, even though made two decades prior, are still 

applicable to the education research scene today.  While it is easy to find published papers on a 

myriad of education-related topics (e.g., the effect of instructor facial expressions on learning 

outcomes, Theonas, et al. 2007), controlled, repeatable experiments on the major cognitive 

theories of learning and their applications are difficult to dig up (Pease & Kuhn, 2010).  As these 

(and other) authors indicate, most published articles focus on the broad effects of a method 

specific to a particular course, but without a precisely-controlled experiment, it is impossible to 
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discern what underlying cognitive process made the method effective.  Without knowing why a 

method is effective, using it to establish a general set of guidelines for how courses should be 

designed or taught is a futile endeavor. 

While this paper does not seek to address all of the fundamental issues related to engineering 

education research, it does hope to shed some light on specific processes and tools– namely, 

PBL– that have been proven to be effective when used correctly.  It does this with the hope that 

education as a whole, and engineering education in particular, can continue to improve and 

produce students who, like their teachers, will contribute to positive change to the world. 

Objective 

This research evaluates one specific aspect of PBL: the use of scaffolds.  Studies by Schmidt 

et al. (2007) explain that scaffolds are structures that support the conceptual learning process 

early-on, but are gradually removed later.  Research suggest that scaffolds can greatly help when 

students first engage in PBL.  PBL opponents charge that the unstructured learning environment 

characteristic of PBL is contrary to cognitive theories on how people learn; however, proponents 

argue that it is designed to offer just enough structure that students will succeed at learning the 

material.  Scaffolds may hold the key to this debate. 

The objective of this research is to demonstrate the effectiveness of scaffolds when using 

PBL in a real engineering classroom.  A secondary objective of this research is to offer guidance 

on how scaffolds should be designed and presented to students during the PBL process.  To 

achieve this, two separate studies are conducted.  The first explores the effect of problem-solving 

structure provided through worksheets (hard scaffolds).  The second evaluates the effectiveness 

of supplementary text and lecture (soft scaffolds), given an effective level of structure via hard 

scaffolds.  The effects of these method are evaluated on each student’s overall subject-related 

knowledge performance on a post-lab examination. 

Genesis of this Research 

IE (Industrial Engineering) 248 (Engineering System Design, Manufacturing Processes & 

Specifications) is a sophomore-level core course in the IE curriculum at Iowa State University.  

The class serves as an introduction to basic concepts on metrology, engineering drawings, 

specifications, quality issues, and the design and improvement of systems.  It is taught in a PBL 

format, where students attend (3) one-hour lectures and (1) two-hour PBL-based lab per week.  

In lab, they reinforce, practice, and apply the concepts taught in lecture.  It should be noted that 

there is not a 1:1 correspondence between lecture and lab material; therefore, there are cases 

where students are “on their own” regarding the laboratory.  Following each lab session, students 

are expected to work in groups to prepare lab write-ups, which strongly follow the format and 

content of a research article (introduction, objective, methods, results, discussion, and 

references). 
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The first PBL session in the course is on measurement variation.  This particular topic 

integrates concepts of probability and statistics, while making those concepts concrete through 

students’ exploration of their own data collected during the lab.  Because it is the first PBL 

session in the first PBL course that students encounter in this curriculum, students seem to have 

great difficulty with it.  Nine years’ results of this lab were unsatisfactory, and students and 

teachers were both frustrated.  Thus the hypothesis emerged that the lab should be changed, and 

more instructional support (i.e. a scaffold) was needed.  This study originated out of a desire to 

quantitatively evaluate the effect of this change to the instructional materials; however, it has 

since evolved into a general evaluation in the methods of PBL-based instruction. 

As an additional factor, the topic taught by this course module is a particularly challenging 

one.  As research (and practical experience) by Konold has shown (Konold, 1989; Konold et al. 

1993; Konold, 1995; Konold and Pollatsek, 2002), students have a particularly difficult time 

grasping the fundamental concepts of variability and incorporating them into “statistical 

thinking” (Feder, 1984; Wild & Pfannkuch, 1999) about the real world.  At the same time, Vidic 

(2011) and Mateo-Sanz and colleagues (2010) observed that proper understanding of statistical 

principles is critical for engineers to be successful in their field. Thus, PBL methods are 

particularly interesting in this case, as the complex reasoning fostered by PBL is theorized to 

assist in the development of a working knowledge of statistical concepts essential to the field of 

engineering. 

2. REVIEW OF THE LITERATURE 

How People Learn 

A reasonable discussion about educational methods should begin with mention of relevant 

theories of cognition in the learning process.  As Kirschner and colleagues (2006) pointedly 

observed, “any instructional procedure that ignores the structures that constitute human cognitive 

architecture is not likely to be effective.”  It should be added that addressing cognitive structures 

is important to understanding how and why a particular method is effective, and this information 

is far more useful than simply know what works.  It is therefore important for this discussion to 

give a general overview of the present understanding of learning, so that a reasonable 

interpretation may be made as to how the methods described within this paper achieve their 

effect.  It should be noted that this discussion serves as a spotlight on specific concepts to be 

addressed, rather than a comprehensive explanation of how the brain works.  Indeed, the process 

of learning is not well understood (Koedinger, et al. 2012), and future research will likely reveal 

new insights not foreseeable here nor compatible with the methods adopted by this research. 

Cognitive Constructivism 

First, this paper accepts the fundamental theory that individuals learn by actively integrating 

new knowledge into their existing cognitive framework.  A smorgasbord of familiar research, 

from Jean Piaget to Donald Norman and others use the concept of mental models or schema into 
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which knowledge is integrated within the learner.  This knowledge includes both declarative and 

procedural types stored into long-term memory and accessible to the learner in short-term 

working memory via a central attention executive (Anderson, 1983).  According to Anderson, 

the degree to which knowledge in working memory is accessible depends on the number and 

strength of links (relationships) that an individual is able to form among various concepts 

(Anderson 1983).  Therefore, the process of learning causes new knowledge to be linked to 

existing knowledge, and students “learn” when the strength or number of these connections is 

great enough to facilitate spontaneous recall.  Theories which rely upon this fundamental 

understanding are collectively known as “constructivist” theories (Derry, 1996). 

Next, since learning integrates new knowledge with existing knowledge, students’ existing 

conceptions are very important to the learning process.  It has been established, for example, that 

students whose existing mental models are incompatible with new knowledge ultimately end up 

with distorted conceptions of the subject to be learned (e.g. Vosniadou and Brewer, 1989, where 

students imagining a spherical earth from the prior perspective of a “pancake” earth might see a 

pancake sitting on top of a spherical earth; the pancake idea is never eradicated).  A critical 

review by Streveler and colleagues (2008) describes an increasing importance placed on 

understanding why students’ misconceptions in science and engineering are difficult to correct.  

Thus, any attempt to teach new material, and especially understand a particular teaching method, 

must account for the pre-conceived notions of the students to be taught. 

Cognitive Load Theory 

In addition to the above theories, Cognitive Load Theory (CLT; Paas & van Merriënboer, 

1994; Sweller, et al., 1998) should be mentioned.  This theory explains how learners acquire 

information under various conditions of task and context, and it originates due to the limited 

capacity of working memory.  When students acquire information, their working memory holds 

information from both the new source and their existing long-term memory base.  The working 

memory space allows the new concepts to be integrated into the old; thus, if it becomes 

overloaded (due to too many disorganized “chunks” of information), the student will not be able 

to integrate new knowledge into their existing mental schema (Sweller et al., 1998).  This implies 

that additional tasks which are irrelevant to the learning process (such as finding and sorting 

through journal articles, for example) only serve to reduce the amount of knowledge gained by 

the learner (Sweller, 1994).  This is known as extraneous cognitive load, which stands in contrast 

to intrinsic cognitive load, a characteristic of the material being learned (mostly related to the 

complexity of the concepts in the material) (Sweller, 1994; Sweller & Chandler, 1994). 

CLT has been a source of debate about whether or not so-called discovery-based 

methodologies (i.e. PBL and similar) can achieve their intended effect.  Opponents of PBL say 

that these methods require too much extraneous load on the part of the learner (Kirschner, et al. 

2006).  PBL proponents argue that the very struggle to find and document information is what 

defines these methods and makes them effective (which causes the discovery process to be 

categorized as germane cognitive load; Schimdt et al. 2007).  As will be explained in greater 
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detail later, the present paper accepts as a basic hypothesis that students learn best when they are 

able to focus on relevant problem-solving tasks rather than handle unnecessary and irrelevant 

searches for information (as exemplified by the use of scaffolds; Hmelo-Silver, et al. 2007).  This 

does not mean that CLT is any more or less valid in the current context, but the basic premise 

that reducing unnecessary cognitive load allows better learning is accepted to be true. 

Critical Thinking in Engineering 

It can be said that the most important quality in an engineer is the ability to think critically—

to analyze a given proposition from a variety of angles and determine its strengths and 

weaknesses.  Critical thinking is generally accepted as a primary goal of higher education 

(Mason 2007, Abrami et al. 2008, Bailin and Siegel 2003, Sheffler 1973).  As educators, it is our 

responsibility to build these skills in our engineering students, or we will produce engineers who 

can pass courses but who cannot function in the workplace.  Therefore, both the teaching and 

evaluation of critical thinking skills are very important in an engineering curriculum (Douglas, 

2012).  It stands to reason that the goals of an engineering education process might best be met 

through methods which can be proven to build critical thinking skills, in addition to conveying 

subject-specific knowledge.  This implies a need to reliably evaluate both students’ contextual 

knowledge and their critical thinking abilities simultaneously. 

As recently as 2008, Abrami and his colleagues performed an exhaustive analysis of 

literature concerning the teaching of critical thinking skills.  They mainly found that methods 

which attempt to teach critical thinking skills are generally successful at doing so.  In particular, 

they found that students learn critical thinking most reliably when CT skills acquisition is a 

stated objective of the course; indirect approaches, where students are expected to learn CT as a 

by-product, are generally not as effective. 

There are, however, some important limitations to the current literature on critical thinking.  

As Abrami et al. (2008) observe, “[critical thinking] is a complex and controversial notion that is 

difficult to define and, consequently, to study.”  Most definitions take a pornographic (“I know it 

when I see it”) approach to defining critical thinking, which is not terribly useful from a research 

perspective.  On the other hand, the current scientific definition of critical thinking (as defined by 

the American Philosophical Association – Facione, 1990) comprises the better part of a 

paragraph, which is nice, but intractable (Anderson et al., 2001).  Therefore, it can be argued that 

there needs to be an engineering-specific definition of what comprises critical thinking, and that 

this specific skill can be taught in the classroom.  Such an undertaking is far beyond the scope of 

this paper. 

Finally, as Douglas (2007) and others point out, there are few critical thinking studies in the 

literature specifically addressing engineering education.  It remains to be studied if engineering 

instruction methods are more effective than others at teaching critical thinking skills.  In fact, 

much of the recent literature on teaching methods seems to forego any mention of it at all.  

Others seem to be divided on the cognitive processes that underlie critical thinking skills and the 
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techniques that should be used to teach them.  Therefore, this paper does not hope to offer any 

new theories or provide evidence supporting one specific theory over another.  The results 

presented later will only serve as a starting point for later discussion on the issue of teaching 

critical thinking in engineering education. 

Problem-Based Learning 

One major undertaking has been the implementation and assessment of Problem-Based 

Learning (PBL) in a wide variety of educational settings (Duschl, 2008; Lehrer & Schauble, 

2006), including engineering education.  According to Gijbels et al. (2005), PBL is a discovery-

based learning method “intended to guide students to become experts in a field of study, capable 

of identifying the problems of the discipline and analyzing and contributing to the solutions.”  To 

achieve this, PBL-based courses are typically taught in a split fashion (lecture plus lab), where 

students have the opportunity to work in groups of three to five and solve problems under the 

guidance of seasoned instructors (Schmidt et al., 2007). 

How PBL Works 

While the precise mechanism behind the effectiveness of PBL has not been determined 

(Pease and Kuhn 2010), several theories serve to explain what is going on inside the brains of the 

students.  The most germane (and contentious) of these is Cognitive Load Theory (CLT) 

(described in greater detail above), which holds that students learn best when their cognitive 

efforts are mostly spent internalizing new information rather than trying to figure out what to 

learn or where to find the material.  For difficult concepts, students are going to spend a large 

amount of effort simply integrating new knowledge into their existing mental schema (Kirschner, 

et al., 2006).  In layman’s terms, CLT implies that students require a large amount of guidance 

during the PBL process in order to achieve a successful learning outcome, particularly if they 

have not been exposed to the material previously.  Some hypothesize (e.g. Hmelo-Silver, 2004; 

Pea, 1993; Salomon, 1993) that PBL works because the cognitive load is shared among the 

various group members, “taking advantage of…distributed expertise by allowing the whole 

group to tackle problems that would normally be too difficult for each student alone” (Hmelo-

Silver, 2004).  In theory, by the time they have finished the process, students have integrated new 

knowledge into their existing cognitive framework and have formed sufficient connections so as 

to make that new knowledge accessible (Schmidt et al., 2011 and many others). 

PBL Controversies 

While many of the benefits of PBL, such as increased abilities in problem-solving, are 

apparent and well-proven (Gijbels et al., 2005), there are many questions about PBL that remain 

unanswered.  In particular, it is not entirely clear what factors or underlying cognitive processes 

make PBL successful (Schmidt et al. 2007) and to what degree PBL-based curricula are effective 

at conveying conceptual knowledge (Gijbels et al., 2005; Streveler, et al., 2008).  Meta-analysis 

of literature by Gijbels et al. (2005) concluded that PBL is better at increasing students’ 

understanding of the principles that link various concepts, as well as helping students apply those 
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principles and concepts during problem solving.  However, when addressing the transfer of 

conceptual knowledge, Gijbels et al. (2005) found that PBL and conventional approaches 

(lecture only) were not significantly different. 

One place where this debate is particularly poignant is in a recent literary interchange 

regarding the use of minimally-guided teaching versus direct instruction techniques.  In a series 

of articles by Sweller, Kirschner, and Clark (2006, 2007), the authors steadfastly defend the use 

of direct instruction over problem-based learning and other techniques that place emphasis on 

self-guided learning.  The responses to these papers (and in fact, the raising of the issues in the 

first place) appears to be more rooted in opinion than in the results of controlled experiments (a 

fact which Sweller et al., 2007 readily admit).  Sweller and his colleagues specifically call out 

the minimally-guided nature of PBL (and other similar approaches), a nature that is disputed by 

the proponents of PBL.   

At the crux of this debate is whether direct instruction or PBL is better at fostering critical 

thinking skills.  Is critical thinking a result of specific practice in problem-solving techniques, as 

PBL proponents claim, or must students have robust conceptual knowledge before critical 

thinking is possible?  Sweller, Kirschner, and colleagues use the cognitive theories previously 

mentioned in the present paper to simultaneously support their position and rebut those who tout 

PBL.  However, it is not obvious by reading their papers that they specifically address critical 

thinking skills or the role that such direct-instruction techniques play in building them in 

students.  Their logic dictates that direct instruction builds robust conceptual knowledge in 

students, such that critical thinking capacity eventually emerges on its own; however, it is not 

obvious that this happens, and a meta-analysis by Abrami and colleagues (2008) found that the 

opposite is true:  CT skills are best enhanced when the explicit goal of instruction is to build 

them.  Furthermore, the “emergent CT skills” hypothesis assumes that the ability to think 

critically about a subject is entirely dependent upon an individual’s existing expertise in that 

subject (i.e. CT skills are non-generalizable), an assumption which is somewhat dubious (Abrami 

et al., 2008). 

Regardless of their intent, the discourse by Sweller and colleagues leaves the impression that 

it is better to give students all the answers up front than to train them expressly to think for 

themselves.  Many engineering instructors would find this approach objectionable (Mina, et al. 

2003).  At the same time, nobody has yet decisively proven whether either approach (PBL vs. 

direct instruction) is effective at teaching critical thinking skills.  This question must be answered 

before meaningful scientific discussion on the issue is possible; hence, there remains a 

considerable amount of work to be done.  The purpose of the present paper is not to enter into 

either side of this debate, but instead to offer some objective scientific evidence for the 

effectiveness of one specific version of PBL. 
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PBL Defined 

Part of the reason for these contradictory and confusing reports in the literature is that PBL 

has been widely adopted across disciplines and educational settings.  In a critical review of the 

literature, Taylor and Miflin (2008) highlight the various ways that PBL has been applied.  

Throughout this process, they argue, the very definition of PBL is “as elusive [at present] as it 

has been since the concept was first expressed over forty years ago.”  They observe that the very 

process of disseminating the methods of PBL have resulted in countless variants and 

methodologies applied in panacea-like fashion, not all of which are compatible with the original 

intentions for (or theories behind) PBL.   

With this in mind, it is important to identify what PBL means in the context of this paper.  

The definition of PBL used here is largely consistent with the original ideas of Barrows and 

Tamblyn (1980), as well as the findings of Taylor and Miflin (2008); however, small details 

(such as the size of the groups) have been reduced in accordance with more recent research into 

group sizes.  In general, however, PBL is defined to consist of a multi-phased collaborative 

approach to education where students gain knowledge as they work in small groups (3-5 

students) and attempt to solve a problem carefully-designed by the instructor.  Throughout the 

problem-solving process, students work together, integrating existing knowledge and seeking out 

new knowledge, all with the help of the instructor.  The key to PBL is that learning, for the most 

part, is pull-based (students seek the necessary knowledge) rather than push-based (students are 

fed knowledge by an instructor) (Schmidt, et al. 2011). 

Controversial Definition and Use of Scaffolds in PBL 

As mentioned previously, a major criticism of PBL is its unstructured nature.  Proponents 

argue, however, that PBL does have structure where it is necessary.  One way to provide 

structure is through the use of scaffolds in the PBL process (Reiser, 2004).  Scaffolds are any 

item or tool that provides additional structure to the PBL process (Schmidt et al., 2007; Simons 

& Klein, 2007; Saye & Brush, 2002), allowing students to achieve success in learning where 

they otherwise would not (Wood et al., 1976). Scaffolds work by reducing the amount of 

cognitive effort that students must expend to learn the material; by providing students with 

concepts beforehand, students’ attentional processes can be focused on the problem rather than 

on knowledge acquisition (Schmidt et al., 2007).  Unfortunately, the overly-broad definition of 

scaffold offers little guidance as to how they should be implemented (Pea, 2004; Simons & 

Klein, 2007). 

There seems to be general consensus that scaffolds can either take the form of a lab handout 

or worksheet (a hard scaffold) or a tutor or instructor (a soft scaffold) (Simons & Klein, 2007; 

Saye & Brush, 2002).  Authors also agree that, in general, as students become more accustomed 

to the PBL process, the use of scaffolds can be gradually reduced until students are primarily 

responsible for their own learning (Schmidt et al., 2011).  What constitutes effective scaffolds, to 

what degree the scaffolds should be reduced, and how much time the reduction should span are 

the topics of current and future research. 
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Recently, there has been extensive debate on the use and effect of scaffolds in PBL.  Some 

argue that scaffolds are ineffective because PBL methods rely on unstructured interactions to 

effect learning (Kirschner et al., 2006; Choo et al., 2010).  Others say this argument is illogical 

because all instruction must at least contain some form of structure, or it would not be effective 

(Schmidt, et al. 2007; Simons & Klein 2007; Hmelo-Silver et al. 2007).  This has led to differing 

opinions on how PBL sessions should be conducted and what materials should be provided to 

assist students in the learning process (Taylor & Miflin, 2008). 

At the same time, research into the efficacy of scaffolds (and other aspects of PBL) has been 

fraught with difficulty (Pease & Kuhn, 2010).  Experiments on PBL are problematic to conduct 

because extraneous factors (like motivation, content, instruction, and assessment methods) are 

difficult to hold constant over an extended study.  Furthermore, studies are nearly impossible to 

compare because of inconsistent assessment methods (Belland, 2008), inconsistent definitions of 

PBL, and inconsistent ideas as to how learning sessions should be conducted (Taylor & Miflin, 

2008).  Furthermore, the effect of time spent learning in-class versus out-of-class has not been 

effectively evaluated (Pease & Kuhn, 2010).  This has made the debate over PBL less about the 

cognitive science behind it and more about procedures and research methods used to evaluate it 

(Colliver, 2000; Belland et al., 2008).  As a result, the literature cannot be said to contain a 

reliable set of facts, much less a theory, regarding PBL or the use of scaffolds. 

This paper contributes to this research by evaluating the effect of scaffolds in an actual PBL 

setting over a short amount of time, where the effects of confounding variables are minimized.  

By taking this approach, the intention is to provide evidence supporting the use of scaffolds, as 

well as qualitative methods on how they might be designed, presented, and used. 

3. METHODS 

Two separate, related studies were conducted.  Study 1 evaluated the difference between 

different types of scaffolding.  Study 2 evaluated the difference between instruction methods.  

Thus, this section will first describe the methods common to both studies, then follow up with 

specific procedures for each study. 

Common Components 

Both studies presented students with a real problem-based laboratory session which they 

would experience during the normal progression of their coursework.  The study environment 

was designed to simulate the original course environment as much as possible, using the same 

instructors, contact time, format and organization, physical location and setup, and work content 

as the original course.  It should be noted that there are aspects to the present course design (e.g. 

group size and group assignment process) that may not be ideal, but those aspects are not the 

subject of the study and are kept consistent for simplicity. 
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Study sessions were targeted for groups of up to 10 students, and were held on several 

afternoon/evening times within one week of each other.  All participants completed a pre-test, a 

one-hour laboratory session, a group homework assignment, and had optional group work time, 

during which the instructors were present if they had questions on the homework assignment.  

Students were expected to complete the homework assignment within a week of the lab.  All 

students returned approximately 2-3 weeks later (following a mid-semester break) for a post-test.  

The laboratory session, homework assignment, and post-test were substantially identical between 

the two studies.  The studies varied the lab procedure and lecture content independently, as 

described below. 

Study participants were chosen from among various engineering courses at Iowa State; as 

motivation, participants were offered extra credit in those courses (the percentage varied slightly 

by course, but was targeted to be about 1/3 of a letter grade), and were told that their extra credit 

points would depend on their performance on the homework and final exam.  Participants in both 

studies were either “experienced” or “inexperienced” based on the number of courses they had 

taken.  A very small minority of the students (7%) participated in both studies; this was 

determined not to present an issue because the studies, while similar, were not identical, and they 

were conducted far enough apart that participants would remember little of the first study 

procedure (it should also be noted that a t-test was run on those students, and found no 

significant difference in their scores). 

Study One 

This study evaluated the effect of schema-congruent worksheet scaffolding on students’ 

learning performance.  Students were randomly assigned to either a control group or experiment 

group.  The control group presented students with a weakly-congruent worksheet scaffold, while 

the experiment group presented students with a highly schema-congruent worksheet which had 

been designed in accordance with Donald Norman’s User-Centered Design principles (Norman, 

1990).  The schema-congruent worksheet presented information in a more congruent sequence, 

including requiring students to perform the calculations and answer the discussion questions in a 

specific order.  These materials are available in Appendix A.  The differences in the control and 

experiment sessions are summarized in Table 1 below. 

TABLE 1: COMPARISON OF CONTROL SETUP AND EXPERIMENT SETUP FOR STUDY ONE (DIFFERENCES IN 

SCAFFOLD) 

Item Control Setup Experiment Setup 
Amount of concept knowledge provided in lab handout Much less Much more 
Correlation of lab procedure with concept definitions Not correlated Correlated 
Structure and explanation of methods in lab procedure Less structure More structure 
Number and complexity of calculations (Equivalent) (Equivalent) 
Applicability of Calculations to Learning Objectives Unclear Clear 
Number and type of concepts/applications addressed in lab write-up (Equivalent) (Equivalent) 
Time spent conducting lab experiment (Equivalent) (Equivalent) 
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Study One Data Collection 

Data in this study was collected from written short-answer exams, which is the same format 

as presented in the real class.  The pre-test was substantially shorter than the post-test and 

evaluated students’ pre-existing conceptual knowledge.  The post-test was a 30-minute exam 

which had greater depth of conceptual evaluation as well as application questions (requiring 

students to both understand the concept and apply it in a specific situation).  For the text of the 

pre- and post-tests, see Appendix B. 

The exams were administered in a quiet testing environment.  Students were informed of the 

time remaining, and were encouraged (but not required) to finish the exam within the allotted 

time slot.  Questions were graded by two independent graders following the conclusion of the 

study, and discrepancies were resolved by discussion between graders.  The questions were 

designed to elicit precise responses; as a result, grading was generally binary (either entirely 

correct or entirely incorrect); however, an occasional answer earned partial credit for being 

correct but incomplete.  The grading philosophy was as follows: 

- Correct answer, correct justification = 100% 

- Correct answer, partially-correct justification = 30-60% 

- Incorrect justification OR incorrect answer = 0% 

Because the pre- and post-tests were different, scores could not be directly compared 

between them to determine whether students learned; the rationale for this is that a direct 

comparison would have taken much more time on the students’ part, and would have reduced 

their overall motivation to learn the material, nor would such a comparison help achieve the 

study objective. 

Study Two 

This study evaluated the effect of general instruction on the topics to be learned during the 

lab.  Students were randomly placed into three sessions:  control, experiment I and experiment II 

(these sessions are summarized in Table 2 below).  All sessions used the schema-congruent 

scaffold design presented in study one.  In addition, a brief (20-minute) lecture and four pages of 

supplementary text were provided to students in the experiment sessions, while control students 

received no lecture or supplementary materials.  The supplementary text and lecture slides 

(available in Appendix C) highlighted the major concepts to be learned from the lab, and the 

lecture in particular made links between the various concepts clear to the students.  Students 

were encouraged to ask questions during the lecture. 

TABLE 2: LIST OF RUNS FOR STUDY TWO 

Item Lecture Lab Handout Contents 

Control None Procedure Only 

Experiment I Before Lab Lecture Material + Procedure 

Experiment II After Lab Procedure + Lecture Material 
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Study Two Data Collection 

The Blackboard course management system was used to manage the bulk of data collection 

in the course.  This data consisted of (1) personal data questionnaire, (2) pre-lab quiz, (3) group 

homework scores, (4) post-lab quiz, and (5) post-study questionnaire.  Quiz questions were 

generally weighted based upon the importance of the concept to be conveyed (more important or 

higher-level concepts received greater weight).  Administration and grading of the exams was 

entirely consistent with the procedure outlined for study one above. 

The personal data questionnaire consisted of 13 multiple-choice questions.  There were no 

correct or incorrect answers.  It was administered and scored by the Blackboard course 

management system.  The test questions are available in Appendix D.  In general, the test asked 

questions on the following subjects: 

- Gender, major, year in school 

- Prior coursework 

- Prior hands-on lab experiences 

- Academic performance 

The pre-lab quiz consisted of 22 multiple-choice questions.  It was administered in a 

controlled test environment by the Blackboard course management system.  The test questions 

are available in Appendix E.  The test asked questions related to the following subjects: 

- General critical thinking/problem-solving ability (5 questions) 

- General probabilistic/statistical reasoning (6 questions) 

- Specific measurement variability knowledge (10 questions) 

The homework assignment consisted of 7 questions designed to engage students in group 

discussion of the material covered during the lab.  The questions were primarily two-part 

(describe-explain) questions, and they were arranged in such an order that the students would 

first link concepts, then go in-depth using the concepts to explain the outcome of their 

experiment.  The homework assignment text is available in Appendix C.  The homework 

assignment was graded and returned to the students by the instructor within a week from the time 

it was turned in.  Grades were compiled for each question. 

The post-lab quiz consisted of two parts: a multiple choice portion (11 questions, presented 

in Blackboard) and a short-answer portion (11 questions, on paper).  The questions are available 

in Appendix E.  The quiz was administered in a 30-minute session in a controlled test 

environment; four session times on two consecutive nights were available for students to fit it 

into their schedule.  The written questions were graded by two separate instructors, and any 

discrepancies were resolved through discussion.  Questions were asked on the following 

subjects: 

- General critical thinking/problem-solving ability (5 multiple choice, 1 written) 

- General probabilistic/statistical reasoning (5 multiple choice) 
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- Specific subject conceptual/application knowledge (10 written, 1 multiple choice) 

The exit survey was optional and consisted of six Likert-scale questions.  The questions are 

available in Appendix D.  Questions were asked on the general topics of: 

- Group participation on homework 

- Value obtained by participating 

- Self-evaluation on exam results (results had not been released at the time) 

Assessment of Statistical Reasoning and Critical Thinking 

As additional data points, critical thinking and statistical reasoning skills were assessed 

independently for each student.  This was accomplished via a series of multiple-choice questions 

related to each skill respectively.  Students were asked an equivalent and parallel number of 

questions on pre- and post-test.  Statistics questions were obtained by browsing relevant 

literature and extracting questions that would clearly demonstrate proper versus improper 

statistical and probabilistic reasoning (Konold, 1995; Kahneman & Tversky, 1972).  Critical 

thinking questions were sourced from existing practice exams for standard critical thinking tests 

(for example, the Watson-Glaser, Cornell, and California critical skills tests) and were chosen to 

elicit students’ logical thinking and critical reasoning skills.  None of the questions required any 

subject-specific knowledge; each question had a single correct answer that could be determined 

precisely from the information provided in the question.  Only questions which had been tested 

and proven not to be defective were used (Polanowski, 2013). 

Regarding critical thinking assessment, there is widespread disagreement as to the 

appropriateness of using multiple-choice methods to assess critical thinking.  Indeed, there is 

controversy over the very nature of critical thinking, causing some to argue that its evaluation is 

a futile endeavor (Lai, 2011; Norris, 1989; Douglas, 2012).  While the authors reject this line of 

thinking, it must be admitted that the evaluation methods used in the present study are far from 

ideal.  Many of the multiple-choice critical thinking skills assessment products present several 

pages of questions to students, whereas the present study used five questions per exam (for a 

total of 10 multiple-choice questions total).  The rationale for this is that the objective of this 

research is not to establish rigid evidence for a change in critical thinking, but rather to identify 

trends that may exist which could possibly be the subject of future research. 

Statistical Methods 

Response data was first evaluated for normality and equality of variances.  All response 

variables were checked against a chi-squared goodness-of-fit test before further analysis was 

conducted.  Response variables were then screened against the independent variables for 

statistically-significant effects using a standard multi-factor analysis of variance (ANOVA) in 

the JMP program.  Following effect screening, the ANOVA was then re-run with significant 

variables only to generate the final result tables. 
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4. RESULTS 

Study One 

This study had a total of 24 participants.  One participant was excluded following 

completion of the study due to significantly below-average pre- and post-test scores (near zero 

for both).  The control group contained 9 students and the experiment group contained 15 

students.  Due to the small sample sizes, an alpha level of 0.10 was considered to be significant.   

As a note on the lower alpha level, Cohen observes that 80% confidence intervals make 

more sense for psychologically-based studies (Cohen, 1990); therefore, this study is justified in 

using any alpha less than 0.20.  According to Rice & Harris (2005), studies of an exploratory 

nature (which this study admittedly is) have fewer controls in place, and standards for acceptance 

are appropriately lower.  Their observations show that future, better-controlled studies will yield 

even stronger significance and effect sizes (d) (Rice & Harris, 2005). 

Pre- to Post-Lab Results 

Subjects completed both a pre- and post-lab examination.  A paired-samples t-test (see 

Figure 1 and Table 3 below) showed a significant increase of 27.3% on average from pre-test to 

post-test.  It should be noted that the tests were not identical; however, they were similar in 

wording, content, and format.  The pre-test was shorter than the post-test and tested concept 

knowledge only; the post-test evaluated both concept and application knowledge.  These results 

indicate that students generally achieved a positive learning outcome from the lab experiment. 

  

FIGURE 1: STUDY ONE PAIRED-SAMPLES T-TEST (PRE- TO POST-TEST) 
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TABLE 3: JMP PAIRED-SAMPLES RESULTS (PRE- TO POST-TEST) 

Post-test Percent 0.6025  t-Ratio 6.288108 

Pretest Percent 0.33  DF 23 

Mean Difference 0.2725  Prob > |t| <.0001* 

Std Error 0.04334  Prob > t <.0001* 

Upper 95% 0.36215  Prob < t 1.0000 

Lower 95% 0.18285    

N 24    

Correlation 0.38955    

 

Effect of Experiment vs. Control 

Groups were tested for equality of variance.  The O’Brien and Levene tests for variance 

equality were chosen due to their use of mean values and robustness to violation of normality 

(Levene, 1960; O’Brien 1978) due to small sample sizes.  These returned inconclusive (p-Values 

~0.50) on the pre-test data, thus it could not be shown that the equal variances was violated 

between the two groups for the pre-test scores.  Subsequently, no significant difference in pre-

test scores was found between groups. 

For the post-test, a preliminary multi-factor ANOVA analysis showed an interaction 

between students who had taken the IE 248 class and the training method, likely due to the fact 

that they were already familiar with the control method and the experiment method was entirely 

new.  Therefore, it was determined to exclude that group of students (5 participants) from this 

portion of the analysis.  The post-test equal variances test were conclusive (p-Values of .03 for 

both the Levene and O’Brien tests).  This indicates a significant difference in standard deviation 

between the control group and the experiment group, with the experiment group having a 

significantly lower standard deviation (see Table 4 below).  Note that we assume equality of 

variance for the post-test score analysis because the underlying population is the same in both 

groups. 

TABLE 4: STUDY ONE EQUALITY OF VARIANCES TESTS, POST-TEST SCORES 

Level Count Std Dev 

N 7 0.2110 

Y 12 0.1090 

 

Test F Ratio p-Value 

O'Brien[.5] 5.5409 0.0309* 

Levene 5.2660 0.0347* 

 

A three-factor analysis of variance was performed on the post-test data.  Controlling factors 

were pre-test score and interaction between treatment and pre-test score.  Assuming equal 

variances (see explanation above), a one-tailed t-test showed a significant difference in post-test 

score between the two groups at the α-0.05 level (p = .0417).  From a purely descriptive 

standpoint, the experiment group performed better than the control group by about 12.5% on 
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average after controlling for other factors.  These results are shown in Figure 2 and Table 5 

below. 

 
FIGURE 2: STUDY ONE, COMPARISON OF CONTROL AND EXPERIMENT GROUPS 

TABLE 5: STUDY ONE – T-TEST OF DIFFERENCE BETWEEN CONTROL VS. EXPERIMENT 

Item Value Item Value 

Difference 0.1253 t Ratio 1.8546 

Std Err Dif 0.0676 DF 15 

Upper CL Dif 0.2438 Prob > |t| 0.0834 

Lower CL Dif 0.0069 Prob > t 0.0417 

Confidence 0.90 Prob < t 0.9583 

 

TABLE 6: ANOVA FULL FACTORIAL ANALYSIS OF POST-TEST SCORES 

Term   Estimate Std Error t Ratio Prob>|t| 

Intercept  0.4624 0.0706 6.55 <.0001* 

Pretest Percent  0.3814 0.2431 1.57 0.1375 

Training[Control]   -0.0627 0.0338  -1.85 0.0834 

(Pretest Percent-0.25263)*Training[Control]  0.4903 0.2431 2.02 0.0620 

 

Interaction 

Figure 3 below displays the statistically-significant interaction between group and pre-test 

scores.  As the chart shows, students in the control group performed roughy proportional to their 

pre-test score on the post-test (i.e. a low score on the pre-test implied a low score on the post-

test).  This was not the case for the experiment group, however; their scores did not depend at all 

on the pre-test score (i.e. no correlation between the two). 
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FIGURE 3: STUDY ONE - INTERACTION BETWEEN GROUP AND PRE-TEST SCORE 

Effect Size 

There was a large effect size, shown by Cohen’s d, which focuses on the practical 

significance of results rather than statistical significance (Cohen, 1988 and 1990).  Jacob Cohen, 

one of the leading experts in the fields of statistics and psychology, states that it is generally 

better to understand “how big” rather than “how statistically significant” the experimental effects 

are (Cohen, 1990).  Since this study involves human cognitive abilities, and since related meta-

analyses (Springer et al., 1999) use Cohen’s d as a practical measure of significance across 

studies, its use here serves as demonstration of the overall impact from the results achieved. 

In this study, the effect size (d) was computed to be 2.887 (see Equation 1 below).  Another 

way to view this is that the participants in the experimental group scored nearly three standard 

deviations higher than the control group, on average, after controlling for the factors mentioned 

above.  According to Cohen, a d-value greater than 0.8 indicates a large effect, “about as high as 

they come” (Cohen, 1988).  Note that Cohen’s value requires the use of pooled standard 

deviation, which is appropriate for the interpretation of this value (Cohen, 1988). 

EQUATION 1: FORMULA AND CALCULATION FOR COHEN'S D (COHEN, 1988) 
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Study Two 

This study had a total of 68 participants.  One participant was excluded following the 

grading of the post-test, where the subject’s answers indicated an inability to comprehend the 
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courses were placed into the experienced group, while others were considered inexperienced.  

There were 32 inexperienced students and 36 experienced students.   

Participants were further divided into one of three treatment types:  control, experiment I, 

and experiment II.  Table 7 below contains a summary of the numbers of participants in each 

group. 

TABLE 7: STUDY TWO - SUMMARY OF PARTICIPANT TYPES 

 Control (0) Experiment I (1) Experiment II (2) 

Experienced 9 13 14 

Inexperienced 12 6 14 

 

Results by Treatment Type 

Figure 4 below shows the graphical depiction of the specific subject results by treatment 

type across both experienced and inexperienced students.  As the 95% confidence interval error 

bars show, there were no statistically significant differences in average score among any of the 

treatments for either group before controlling for additional factors. 

 
FIGURE 4: STUDY TWO - RESULTS BY TREATMENT AND EXPERIENCE LEVEL 

A two-way ANOVA was performed on the factors believed to be correlated with the final 

exam score, including GPA (self-reported), ACT score (self-reported), pre-test score, CT 

composite score, and others.  If a student did not report a GPA or ACT, the column average was 

used in place of the missing value.  The analysis was performed independently for each 
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experience level, and the results appear below in Table 8 and Table 9.  No significant 

interactions were present. 

As these data show, GPA and Experiment I treatment significantly affected the outcome for 

inexperienced students, while critical thinking score significantly affected outcome for 

experienced students.  The model for inexperienced students predicted approximately 44% of the 

variation in scores (R
2
 of .443) while the experienced student model predicted approximately 

40% of the variation (R
2
 of .403).  In the tables below, the treatment factor estimate indicates the 

difference that particular treatment would add to (or subtract from) the overall score if the 

student experienced that particular treatment.  Note that the treatment scores were computed 

from the reference score of Experiment II. 

TABLE 8: STUDY TWO - ANOVA FACTORIAL ANALYSIS FOR INEXPERIENCED STUDENTS 

Term   Estimate Std Error t Ratio Prob>|t| 

Intercept  2.144 6.550 0.33 0.7460 

Treatment[Control]  2.077 1.892 1.10 0.2819 

Treatment[Exp I]   -5.851 2.182  -2.68 0.0123 

CT Composite  0.609 0.342 1.78 0.0861 

GPA  5.060 1.818 2.78 0.0097 

 

TABLE 9: STUDY TWO - ANOVA FACTORIAL ANALYSIS FOR EXPERIENCED STUDENTS 

Term   Estimate Std Error t Ratio Prob>|t| 

Intercept  10.691 8.187 1.31 0.2012 

Treatment[Control]  1.874 1.858 1.01 0.3210 

Treatment[Exp I]   -1.048 1.681  -0.62 0.5374 

CT Composite  1.377 0.346 3.98 0.0004 

GPA  1.476 2.745 0.54 0.5947 

 

5. DISCUSSION 

Two separate but related studies were conducted to evaluate theories related to PBL in a real 

engineering classroom.  Looking at both studies together, an interesting picture begins to emerge 

about how students learn in the PBL environment, as well as what factors are important to ensure 

a successful, consistent learning outcome. 

Study One 

The objective of study one was to evaluate the effect of a hard scaffold on student learning 

performance.  Study one presented a relatively homogenous group of students with one of two 

learning setups.  The first was the original course material, which did a rather poor job of linking 

the learning objectives for the lab session with the procedure followed in the lab.  The second 

was a re-designed lab handout and procedure that (a) included additional abstract concepts and 
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(b) provided a much more structured procedure under which to conduct the lab experiment and 

analyze the data.  It was hypothesized that students who had completed the experimental lab 

setup would have a higher performance on the post-test than their control counterparts because of 

the (ostensibly) better scaffold. 

While the study had a relatively small sample size, there were two significant differences 

that emerged between the control group and the experiment group.  The first was that students in 

the experiment group had a significantly lower standard deviation of scores on the post-test than 

their control counterparts (see Table 4 on page 15).  Next, a significant increase in average score 

was seen (by about 12.5 percentage points) for the experiment group over the control group 

(Table 5 on page 16).   

This result supports the original hypothesis that students would perform better when 

provided with a more-structured laboratory handout.  The improved scaffold gave students in the 

experiment group a better ability to form connections between the abstract concepts presented in 

the lab and the concrete lab procedure.  The lower standard deviation, while originally 

unexpected, could be explained by lower-ability students being helped more by the improved lab 

setup than higher-ability students.  This explanation is consistent with Chi & VanLehn (2008) 

and Bloom (1984), who evaluated learning outcomes between weak and strong students.  With 

targeted tutoring, strong students’ ability did not increase significantly; however, weaker 

students’ ability increased dramatically, which reduced the standard deviation between overall 

scores.   

It is further apparent by examining the interaction between training method and pre-test 

score (see Figure 3 on page 17) that this was happening.  In the control setup, students’ score on 

the post-test was roughly proportional to their pre-test score; however, there was no correlation 

of pre-test score to post-test score with the experiment group.  It is easy to see that students who 

did poorly on the pre-test did just as well on the post-test as higher-performing students.  

Furthermore, it is clear that the high-performers stayed high; the low-performers rose 

disproportionally to meet them.  When taken in context, this result indicates that the scaffold in 

the lab is actually functioning in a similar way as a tutor, probably because of the structured way 

the questions are asked (as a tutor would ask them); students who cannot answer the questions 

will naturally be prompted to seek personal help from the instructor (or their group members), 

and will seek help as long as they are unable to understand the concepts. 

Limitations of Study One 

The results of study one, while promising, should be put into the context of their limitations.  

First, there was a relatively small sample size composed of both experienced and inexperienced 

students (with experience defined by the student having taken the original course that taught the 

material).  The inclusion of these students into groups of inexperienced students may have 

affected the outcome of the learning process for all students.  Secondly, and more importantly, 

there were two main differences between the scaffold presented to the experiment group and that 
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presented to the control group:  (a) the lab procedure was modified to be more coherent and (b) 

there was additional abstract background information provided within the packet.  It is not 

apparent which of these changes (or the combination thereof) resulted in the ultimate outcome. 

Study Two 

The objective of this study was to evaluate the effect of providing students with abstract 

background information as part of a scaffold.  It was conducted in such a way as to address the 

major limitations of study one, having a higher sample size, making a priori distinctions between 

experienced and inexperienced students, and changing only one variable (the amount of 

background information provided to students). 

The results of this study were somewhat more interesting than the results of study one.  First, 

it was expected that students in the control group would underperform both experimental groups.  

This was not the case at all – overall, students in all three groups performed equally well on the 

post-test.  When the results are examined across experience levels, however, the picture changes 

somewhat.  Inexperienced learners performed equally well in the control and experiment II 

condition (lecture after lab), but students in the experiment I condition (lecture before lab) 

performed significantly worse than their counterparts (-4.44 percent on average, p=.0131) on the 

specific subject-matter portion of the final exam.  Experienced students performed equally-well 

regardless of treatment group. 

The fact that inexperienced students performed significantly worse than students who 

received no lecture or had lecture after the lab is very intriguing.  One possible explanation for 

this is that students who were not familiar with this material became confused about it during the 

lecture; since they had not performed the hands-on portion of the lab yet, there were no prior 

concrete experiences to which they could relate the information.  It is not apparent from 

searching through relevant literature whether other studies have demonstrated a detrimental 

effect of a lecture, so this definitely should be a topic for future research. 

Additional factors that explained variation in students’ scores were University GPA and 

critical thinking composite score; however, this was not consistent across experienced vs. 

inexperienced students.  For experienced students, the strongest predictor of their score was 

critical thinking composite, and GPA was not significant.  For inexperienced students, the 

opposite was true.  It’s possible that older, more experienced students have stronger critical 

thinking skills, which were required on this test for nearly all of the questions; once again, 

however, it would be unwise to hypothesize too much about the causes of this without further 

study. 

Remarks 

Proponents of PBL tout its ability to foster strong learning outcomes even in the face of 

robust misconceptions in mental models or schema (Vidic, 2011; Riskowski et al., 2009; Mills & 

Treagust, 2003; Perrenet et al., 2000).  The studies presented in the present paper support those 
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claims.  There are several published papers regarding the difficult nature of the materials 

presented to students in these studies (Konold, 1989; Konold et al. 1993; Konold, 1995; Konold 

and Pollatsek, 2002), and evidence exists that students arrive with pre-conceived mental models 

and dispositions which make it difficult for them to learn the material via traditional lecture 

methods (Konold, 1989; Konold et al. 1993).  According to Dr. Stephen Vardeman, professor of 

Statistics and Industrial Engineering at Iowa State University, who has authored textbooks and 

instructed on this topic for more than three decades, students require the hands-on experience 

afforded by the laboratory; their participation in the collection and analysis of data is essential to 

achieve the learning outcome (personal communication, 2011; Vardeman, 1996).  To address 

student misconceptions, Perrenet and colleagues (2000) say that “generally speaking, a subtle 

process of guided co-operative learning is necessary, one which shares some of the 

characteristics of PBL, but requires smaller groups and more structuring by the teacher.”  It 

should be noted that (a) it is uncertain which definition of PBL Perrenet is referring to and that 

(b) as previously described, the present studies were designed a priori exactly as described by 

Perrenet. 

Structure of PBL Session is Important 

What can be seen from the results of these studies is that the specific structure and content of 

the hands-on laboratory sessions is very important to achieving the end goal.  Small, seemingly 

trivial changes to the PBL procedure (in this case, data collection and analysis procedures) result 

in large, significant performance gains for students.  Going back to study one, there were several 

key modifications to the PBL scaffold that likely contributed to the successful learning outcome.  

First, students were given a logical process to follow when collecting data.  It was made obvious, 

both through the data collection paperwork and the physical procedure, what data was being 

collected.  Data collection was segmented into phases, and there was a clear purpose to each 

phase of the data collection process; this is in contrast to the original lab procedure, where 

students collected all of the data at the same time.  Furthermore, while the calculations in the 

modified procedure were more complex, they used familiar terms like mean and standard 

deviation, whereas the original lab used control charting constants and other “magic numbers.”  

The result was a greater ability for students to connect the analysis phase to their raw data.  

Finally, the questions students were asked in their homework assignment had a logical 

progression to them; the first question asked them to explain their learning objectives, while the 

last question asked them to draw logical conclusions from the results of their analysis.  This is in 

contrast to the original lab procedure, which required students to answer a series of “discussion 

points,” but those points were in no particular order nor was it obvious how they connected to the 

actual lab procedure. 

Effectiveness of PBL 

It was originally hypothesized that changes to the lab procedure would be important, but not 

crucial, to achieving the learning outcome.  The lecture and supplementary text were believed to 

be equally important.  Other studies have shown that students can learn significantly more when 
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they receive abstract learning content form a lecture or text source (Schwerdt & Wuppermann, 

2010).  In fact, editorial comments by Kirschner et al. (2006) maintain that students need to be 

given all the information they might need up-front.  The present studies, when taken together, 

cast some doubt onto these assertions; from the results, it is obvious that a properly-designed 

PBL session can and will trigger most, if not all, of the learning that takes place.  Furthermore, 

the results show that it is possible for a lecture to be detrimental under some (not fully-

understood) conditions, which directly contradicts an assertion made by Schwerdt and 

Wuppermann (2010) (“No support for detrimental effects of lecture-style teaching can be found 

….”).  The results of this study could help explain why other studies (ref. Schmidt et al., 2011) 

found PBL methods to be superior to lecture-based methods, and why PBL proponents favor 

discovery methods as opposed to providing students with information a priori. 

As to why students in the experienced group did not experience a similar effect, the 

literature offers a few clues.  First, two studies by Herbert and Burt (2001, 2004) explored the 

change in knowledge structures that takes place as students become more familiar with a 

particular topic (i.e. knowledge schematization).  In particular, they reference the idea of 

“knowing” something versus “remembering” something, implying a distinction between 

semantic memory and episodic memory, respectively (Herbert & Burt, 2004; Tulving, 1985).  In 

general, it is believed that as students are exposed to a particular topic repeatedly, the knowledge 

structures become more organized and well-represented in semantic memory, such that the 

details of the episodic memories no longer are clear.  At this point, students have “internalized” 

the knowledge (Herbert & Burt, 2004). 

This theory of learning appears to be consistent with what was seen in these two studies, 

particularly in study two.  Students in the experienced group not only outperformed students in 

the inexperienced group overall, they showed robustness to whatever deleterious effect caused 

the inexperienced students to falter when presented with a lecture before their lab.  It also helps 

explain why PBL works, especially among students who are just being introduced to the 

material.  According to Korthagen and Lagerwerf (1995), it is important for students to 

experience new, difficult-to-learn concepts in real-world situations.  If episodic memory holds 

the key to learning these difficult topics, then it stands to reason that students learn most 

effectively when totally immersed in the problem, rather than being positioned as a casual 

bystander (i.e. the lecture hall). 

Finally, the results here do not mean that providing students with optional lectures or 

supplementary information is futile.  Some students felt that the lecture was beneficial to helping 

them understand the concepts.  In addition, it is speculated that optional lectures can be an 

important tool in fostering understanding in the PBL classroom.  Further research should be done 

into the reasons why students would choose to attend an optional lecture (i.e. what motivates 

their attendance), and whether or not this correlates with a true gain in learning outcome.  On the 

other hand, neither instructor nor student time is “free” – meaning that if a lab can be designed to 
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convey the topic adequately or superiorly, the instructor’s time might best be spent teaching in 

other ways (perhaps by eliminating lectures altogether). 

6. CONCLUSION 

In this paper, the results of two studies are presented and analyzed.  The picture that emerges 

when both studies are taken into account is that it is the PBL process itself, not the lecture or 

supplementary information provided, that determines the learning outcome.  Specifically, a 

properly-designed PBL session, including relevant scaffolds suitable to the learner’s experience 

and desired learning outcomes, can provide for an equally- or more-successful learning outcome 

than with lecture or lecture-plus-PBL.  This is first established in study one, where an improved 

laboratory procedure gave students some structured guidance to their problem-solving steps, and 

confirmed in study two, where no significant difference was found in the performance of students 

who had received a lecture versus those who had not. 

It has been suggested that students who learn science and engineering concepts experience a 

higher workload because this knowledge has a richer, more complex structure (Perrenet et al., 

2000).  One reason for this is that, in some cases, students must simultaneously learn and apply 

the material (Jong & Ferguson-Hessler, 1986).  The material presented to students in this 

research is both wide in scope and deep in terms of understanding required to successfully apply 

it in new situations.  Students require several “passes” at it before they get it right; this is typical 

of the type of material presented in engineering classes of all disciplines.  Therefore, it stands to 

reason that classes that teach engineering and science topics are not the same as classes that teach 

other topics, and that methods which may work well for other classes may not work as well in 

engineering classes. 

In terms of PBL, it is generally accepted that some level of structure is needed to support the 

process; it is the type and quantity of that structure that is debated (Kirschner, et al. 2006; 

Schmidt, et al. 2007; Hmelo-Silver, et al. 2004).  The results of this study support that view, and 

further provide that a specific type of supporting structure is needed (i.e. not just any scaffold 

will do). 

If the results of this study can be replicated in similar courses, the implications for 

engineering education are immense.  The present culture of the University is to teach students 

primarily via the lecture (push-based) format.  Courses like IE 248, where students spend a 

considerable amount of time in a hands-on laboratory, are relatively rare in the curriculum, and 

are even still accompanied by a lecture component.  The present studies suggest that it is possible 

to transition a greater percentage of engineering education into PBL-based laboratories, and that 

this method has the potential to transform learning and improve it far beyond where it stands 

today. 
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APPENDIX A 

Study One Materials 
 

This appendix contains the lab materials presented to students in Study One.   

Pages 33 through 38 contain the original lab handout, data collection tables, and formulas given to 

students in the control group. 

Pages 39 through 45 contain the modified lab handout and data collection tables provided to students in 

the experiment group. Note that students used a total of four copies of each table. 

Pages 46 and 47 contain the laboratory slides presented to students in both groups as a lecture before 

the laboratory began. 
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Measurement Error Experiment 
Process Description: There is error associated with every measurement which is taken.  If the 

magnitude of the error is small, relative to the variability of the entity being measured, then the 

measurement system is acceptable.  Measurement error less than 10% is preferred, but values 

as large as 30% are acceptable for special circumstances.   

Lab Objectives:  To investigate the sources of measurement errors associated with commonly 

used measurement instruments.      

Lab Procedure:  Choose a feature to be measured, determine the measurement technique, and 

review the technique with all of the inspectors.  Ten pieces of the same object are required, and 

should be numbered so they can be identified.  The test requires two or three inspectors, and 

one person to administer the test.  The administrator should randomly choose the order in 

which the parts are to be measured, and hand the part to the inspector.  Each inspector needs 

to measure each part two or three times.  The repeated measurements cannot be done 

immediately following each other.  The administrator will record the measurements as the 

inspector announces the value.  The administrator must strive to eliminate any bias in the test.   

Repeat the procedure with a different feature, inspectors, measurement instrument, and 

administrator.   

For this application, assume that the measurement error needs to be less than 20% to be 

considered acceptable.   

Develop a spreadsheet in Excel to make the calculations.  Include an electronic copy of the 

spreadsheet, as instructed by the TA.  Make sure that the spreadsheet will be easy for someone 

else to understand and use.   

 

Partial List of Items to Include in Your Report: 

1. Comment on the magnitude of the components of the measurement error (equipment 
and appraiser). 

 
2. What is the measurement error as a percentage of total variability?  What is the part 

variation as a percentage of total variability?  Comment on the use of these two 
different measures of error.   
 

3. How could the measurement error be reduced? 
 

4. What did the administrator do to eliminate any bias?  What else could have been done?  
Why is this important?   
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Table 1: Data collection sheet 
Gauge Repeatability Data Collection Sheet 

Appraiser 

/Trial # 

Aluminum Part (measured with caliper) 

1 2 3 4 5 6 7 8 9 10 

A/1           

A/2           

Average           aX  

Range           aR  

 

 

Appraiser 

/Trial # 

Aluminum Part (measured with caliper) 

1 2 3 4 5 6 7 8 9 10 

B/1           

B/2           

Average           bX  

Range           bR  

 

 RMinRMaxRp  

   2/ba RRR  

 XMinXMaxX DIFF  

 27.3* RUCLR  

 

*UCLR represents the limit of the individual R’s. Circle those that are beyond this limit.  Identify the cause and correct.  Repeat these readings 

using the same appraiser and tool as originally used or discard values and re-average and recompute R  and the limiting value from the 

remaining observations. 
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Gage Repeatability Data Collection Sheet 

Appraiser 

/Trial # 

Aluminum Part (measured with micrometer) 

1 2 3 4 5 6 7 8 9 10 

A/1           

A/2           

Average           aX  

Range           aR  

 

 

Appraiser 

/Trial # 

Aluminum Part (measured with micrometer) 

1 2 3 4 5 6 7 8 9 10 

B/1           

B/2           

Average           bX  

Range           bR  

 

 RMinRMaxRp  

   2/ba RRR  

 XMinXMaxX DIFF  

 27.3* RUCLR  

 

*UCLR represents the limit of the individual R’s. Circle those that are beyond this limit.  Identify the cause and correct.  Repeat these readings 

using the same appraiser and tool as originally used or discard values and re-average and recompute R  and the limiting value from the 

remaining observations. 
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Gage Repeatability Data Collection Sheet 

Appraiser 

/Trial # 

Plastic Part (measured with caliper) 

1 2 3 4 5 6 7 8 9 10 

A/1           

A/2           

Average           aX  

Range           aR  

 

 

Appraiser 

/Trial # 

Plastic Part (measured with caliper) 

1 2 3 4 5 6 7 8 9 10 

B/1           

B/2           

Average           bX  

Range           bR  

 

 RMinRMaxRp  

   2/ba RRR  

 XMinXMaxX DIFF  

 27.3* RUCLR  

 

*UCLR represents the limit of the individual R’s. Circle those that are beyond this limit.  Identify the cause and correct.  Repeat these readings 

using the same appraiser and tool as originally used or discard values and re-average and recompute R  and the limiting value from the 

remaining observations. 
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Gage Repeatability Data Collection Sheet 

Appraiser 

/Trial # 

Plastic Part (measured with micrometer) 

1 2 3 4 5 6 7 8 9 10 

A/1           

A/2           

Average           aX  

Range           aR  

 

 

Appraiser 

/Trial # 

Plastic Part (measured with micrometer) 

1 2 3 4 5 6 7 8 9 10 

B/1           

B/2           

Average           bX  

Range           bR  

 

 RMinRMaxRp  

   2/ba RRR  

 XMinXMaxX DIFF  

 27.3* RUCLR  

 

*UCLR represents the limit of the individual R’s. Circle those that are beyond this limit.  Identify the cause and correct.  Repeat these readings 

using the same appraiser and tool as originally used or discard values and re-average and recompute R  and the limiting value from the 

remaining observations. 
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Table 2: Gage Repeatability and Reproducibility Calculation Sheet 

   From Table 1:   R =    DIFFX =    Rp= 

Measurement Unit Analysis %Total Variation (TV) 

Repeatability – Equipment Variation (EV) 

        

                   EV      =  R  x K1 

                              =  _____x_____ 

                              =   _______ 

# of Trials K1 

2 

3 

4.56 

3.05 

 

 

% EV      = 100 [EV/TV] 

                = 100 [______/______] 

                =  ________% 

Reproducibility – Appraiser Variation (AV) 

     

                   AV     =    nrEVKX DIFF /22

2                               

                             =    ____/_________________ 22
                             

                             =  _________ 

 Appraisers 2 3 

K2 3.65 2.70 

 

% AV      = 100 [AV/TV] 

                = 100 [____/_____] 

                =  ________% 

 

n = number of parts 

r = number of trials 

Repeatability & Reproducibility (R&R) 

                R&R  =   22 AVEV   

                          =  22 __________   

                          =   _________ 

 

 

% R&R   = 100 [R&R/TV] 

               =  100 [_____/_____] 

               = ________% 

Part Variation (PV) 

               PV     = Rp x K3 

                         = ____ x ____ 

                         = ______ 

 

 

% PV      = 100 [PV/TV] 

               =  100 [_____/_____] 

               = ________% 

Total Variation (TV) 

               TV    =  22& PVRR   

                        =     22
_________   

                        =  _______ 

 

All calculations are based upon predicting 5.15 Sigma (99.0% of the area under the normal distribution curve). 

K1 is 5.15/d*2 where d*2 is dependent on the number of trials (m) and the number of parts times the number of 

appraisers (g) which is   assumed to be greater  than 15. 

AV – If a negative value is calculated under the square root sign, the appraiser variation (AV) defaults to zero (0) 

K2 is 5.15/ d*2  where d*2  is dependent on the number of appraisers (m) and (g) is 1, since there is only one range 

calculation. 

K3 is 5.15/d*2 where d*2 is dependent on the number of parts (m) and (g) is 1, since there is only one 

range calculation. d*2  is obtained from Table D3 “Quality Control and Industrial Statistics,” A.J. Duncan.

Parts K3 

2 
3 
4 
5 
6 
7 
8 
9 

10 

3.65 
2.70 
2.30 
2.08 
1.93 
1.82 
1.74 
1.67 
1.62 
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Sources of Variability 
IE 248 LAB EXPERIMENT 1 

LAB OBJECTIVES 
To investigate sources of variability and learn how to separate different components of variability using 

statistics and proper experiment design. 

Introduction 

Variability is defined as “the quality of being uneven and lacking uniformity1.”  In other words, variability 

is an inevitable part of life.  It is impossible to achieve perfect repetition, whether you are throwing a 

football or producing a precision part for the International Space Station.  There is always some degree 

of variability from one try to the next; it may be very small, as with the precision part for the ISS, or very 

large, as with your football throw.  Variability in the world is the main reason that engineers exist. 

Everything that can physically affect a production process introduces a portion of variability.  As 

engineers, it is our job to understand and attempt to control that variability.  Proper control of variability 

allows us to reduce uncertainty, so we can produce cars that start, roads that are smooth, and planes 

that don’t crash.  Too much variability leads to great uncertainty, and when it is left unchecked, you 

often end up hearing about it in the news.  The question then is “How do we account for all of the 

sources of variability?” 

UNDERSTANDING VARIABILITY – MEAN AND STANDARD DEVIATION 
To control variability, we must first understand what it looks like.  In statistics, there are two essential 

ways of describing a set of data.  The first is mean ( ̅), which tells us where the center of the data is.  The 

second is standard deviation ( ), which indicates the spread of the data.  Each physical source of 

variability contributes to variability in our data sets. 

Figure 1 illustrates the concepts of mean and standard deviation using several normal distribution plots.  

Notice how the curves get wider with increasing standard deviation, and how they shift with a change in 

the mean.  Mean and deviation are two different concepts, and they both must be considered when 

accounting for variability in our data. 

 
FIGURE 1: STANDARD NORMAL DISTRIBUTION WITH VARIOUS MEANS AND STANDARD DEVIATIONS 

                                                           
1
 http://www.thefreedictionary.com/variability 
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In a measurement system, another way of looking at mean and standard deviation is by understanding 

accuracy and precision.  A good way of thinking about accuracy and precision is to look at a dart board, 

as in Figure 2.  Accuracy refers to the direction that one is “aimed,” while precision refers to the degree 

with which one is able to hit the target consistently.  In this figure, it is clear that accuracy and precision 

are two completely separate ideas. 

 

FIGURE 2:  ACCURACY VS. PRECISION USING TARGETS 

SOURCES OF VARIABILITY 
As mentioned previously, every physical component of a process adds its own portion of variability.  

Some of these sources of variability are small and can be ignored, while others are quite large and must 

be reduced or eliminated.  As an example, let’s examine a standard milling process for a block of 

aluminum.  The aluminum must be clamped into a horizontal mill, where a face mill cutter then shaves 

off approximately .03" from the top of the block to cut it down to the correct height.  The process is 

supposed to produce blocks that are 1.45" +/- .005", and this dimension is verified at the end of the 

process by using a digital micrometer. 

Where is the variability in this process?  First, not all of the aluminum blocks start out the exact same 

size.  Differences in initial height cause slightly different amounts of material to be shaved off with the 

face mill.  When more metal is cut, the blocks heat up and expand slightly, causing the dimensions to be 

just a little off.  Next, the mill has to be set to the correct depth each time a block is placed on it.  The 

height is reported by a digital gage which has a small (probably negligible) amount of variability 

associated with each reading.  The block is clamped into a vice each time, but there is still a small 

amount of variability in its lateral and vertical position.  Changes in temperature, humidity, and pressure 

from day to day can cause the material to change shape or to react differently to the cutting process.  

Finally, there is a small amount of variability in the measuring process at the end. 

All of this variability can be summed up into two main components:  process variability and 

measurement variability.  Process variability describes the differences from part to part in the output of 

a process, while measurement variability applies to the techniques used to measure those parts.  

Equation 1 illustrates this concept. 

                         √        
               

  

EQUATION 1:  COMPONENTS OF TOTAL VARIABILITY 
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MEASUREMENT VARIABILITY 
When variability is introduced in the measuring process, it can be particularly problematic because we 

can only “see” process variability through measurements.  It is very important that measurement 

variability be kept low (less than 10% of the overall tolerance window); otherwise, engineers will not be 

able to tell the difference between process variability and measurement variability.  This is one of the 

main goals of the field of metrology – the science of measuring. 

In this lab, we are going to take an in-depth look at measurement variability.  As with process variability, 

there are multiple sources of measurement variability.  These sources include the device itself, the 

operator, the environmental conditions (if they change over time while measurements are taken), and 

the measurement technique.  Some of those, such as environmental conditions, can be ignored, 

especially for measurements taken on the same day at the same time.  Others, such as operator 

variability, can be substantial enough to ruin an otherwise-good measurement process. 

We classify the variability of a measurement system as falling under two main components: 

 Repeatability Variation, which is the variability associated with the measurements from a single 

operator using a single device to measure a single part multiple times 

 Reproducibility Variation, which is the variability associated in the measurements from multiple 

operators using a single device to measure a single part multiple times. 

It helps to think about repeatability variation as something that is associated with a particular device 

and operator combination, while reproducibility variation is associated with the differences in 

measurement techniques between operators2.  These two components add together to form 

measurement variability (see Equation 2). 

                                     √              
                   

  

EQUATION 2:  COMPONENTS OF MEASUREMENT VARIABILITY 

STATISTICS AND VARIABILITY 
The field of statistics exists because variability is an unavoidable component of everything.  Statistics is 

concerned with the proper methods of collecting, summarizing, and interpreting data, all within the 

context of real-world variability.  Using statistics, it is possible to separate out the components of 

variability.  While more in-depth statistical concepts will be presented in later courses (particularly IE 

361), it is useful to gain a basic understanding of the statistical concepts that will be used in the 

collection and analysis of data.  Those concepts will be highlighted as the lab procedure unfolds. 

  

                                                           
2
 Vardeman and Morris, IE 361 Module 3, 2011 
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PROCEDURE 

You will be conducting this procedure in groups of no more than five members.  The procedure for this 

lab is divided into two sections.  The first part allows you to evaluate the components of measurement 

variability, while the second allows you to evaluate process variability. 

Note: in all gage readings, use a maximum of three significant figures.  In all calculations, carry four 

significant figures unless otherwise instructed. 

PART ONE 
Your group will be given a single measurement device (either a digital caliper or micrometer) and a 

single (aluminum or plastic) part.  This will form the basis for the measurement system.  Each person in 

the group will use the device to measure the part.  This process will be repeated five times, and the 

results of the measurements will be recorded in Table 1.  Be sure to mark the part type and gage type 

before you begin measuring. 

Once the data has been recorded into the table, use a calculator or spreadsheet to compute the mean 

and standard deviation of each column in the table.  These values are estimates of the repeatability 

variation for each combination of operator and device.  (Is there any evidence to show that one 

operator is less accurate or precise in his or her measurements?)  Note: all units of mean and standard 

deviation are in inches. 

Next, compute the grand mean (the mean of the means) and the standard deviation of the means, 

which you will use to estimate the reproducibility variation.  Finally, compute the pooled standard 

deviation, which is an estimate of the overall repeatability variation for the measurement system (an 

“average” repeatability variation, but you must compute it by using variance in each column -   ).  

Together, repeatability and reproducibility form an upper bound (a worst-case scenario) for 

measurement variability in this measurement system.  (Keep in mind that these are estimates only; you 

will learn how to apply the proper formulas to achieve better estimates in IE 361.) 

Your group will then be given the other measurement device.  Repeat the same process for the other 

device.  Since the device is different, we will treat it as a different measurement system.  (Is there any 

evidence to show that one measurement system is more accurate or precise than the other?)  

Finally, the process of measuring with both caliper and micrometer will be repeated for the other part 

(aluminum or plastic).  In total, you will take four sets of measurements: aluminum and plastic part 

measured with both caliper and micrometer.  

At the end of part one, you will have an estimate of the measurement variability associated with each of 

the two measurement systems for both the aluminum and plastic part. 
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PART TWO 
Your group will be given additional measurement devices (either calipers or micrometers) along with all 

ten parts (aluminum or plastic).  Three group members should select a part at random and take a 

measurement.  The other two group members should record the measurement into Table 2 (you are 

making duplicate records so that data can be shared with the other group).  Be sure to mark the part 

type and gage type before you begin measuring. 

Repeat this process until all of the parts have been measured exactly three times.  Recording and 

measurement duties should be shared among all group members. When you have finished recording 

measurements, your measurement devices will be switched with the other group.  Repeat the 

measurement and recording process for the parts again. 

After you have taken measurements on all 10 parts, exchange one set of your data tables with the other 

group.  You now have two data sets, one for each part measured with both devices.  Proceed through 

the calculations to determine the process (part-to-part) and measurement variability.  (How are these 

numbers affected by the precision of the measurement system?) 

 

DISCUSSION ITEMS 

1. Comment on the magnitude of the components of measurement variability (repeatability and 

reproducibility) within each measurement system.   

a. Should it be expected that one component will be greater than another? 

b. Compare the measurement variability computed in part one with the one in part two.  

c. Why are there differences between the plastic part and the aluminum part? 

d. How would you reduce measurement variability in this experiment? 

 

2. Comment on the differences between the caliper measurement system and the micrometer 

measurement system in terms of overall measurement variability. 

a. For each tool and part, calculate the percentage of total variability that is attributable to 

measurement variability (you will need to use variance,   , for this calculation). 

b. What does (b) indicate about either system of measurement (e.g. are they acceptable)?  

Is there any indication that one measurement system is more accurate or precise than 

the other? 

c. What are your recommendations regarding the measurement of the plastic and 

aluminum parts (i.e. how should they be measured)? 
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TABLE 1:  MEASUREMENT VARIABILITY (REPEATABILITY AND REPRODUCIBILITY) 

Part (circle one):     Aluminum   /   Plastic     Tool (circle one):   Caliper   /   Micrometer        Part # ____ 

   

 
 

  Student 1 Student 2 Student 3 Student 4 Student 5 

 
Measurement 1           

 
Measurement 2           

 
Measurement 3           

  

 
Measurement 4           

  

 
Measurement 5           

  

R
e

p
e

at
ab

ili
ty

 

Mean ( ̅)   ̅̅ ̅= _________   ̅̅ ̅= _________   ̅̅ ̅= _________   ̅̅ ̅= _________   ̅̅ ̅= _________ 

Grand Mean* 

Standard 

Deviation* 

 ̅ = ___________ 

  ̅= ___________ 

Standard Deviation 
( ) 

  = _________   = _________   = _________   = _________   = _________ 
Pooled Standard 
Deviation** 

   = ___________ 

*Grand Mean = average of  ̅’s; standard deviation of  ̅’s   => in Excel, use STDEV.S 

**Pooled Standard Deviation = SQRT(average of   ) =  ̂              

 ̂                √  ̅
  

 

 
        

  where m is #of measurements (5) and   ̅
  is the variance of the grand mean (not the pooled standard 

deviation). 

 

 ̂                                            ̂                                           ̂                                 
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TABLE 2:  TOTAL VARIABILITY 

 
Part (circle one):     Aluminum   /   Plastic   Tool (circle one):      Caliper   /   Micrometer 

 
Measurement 1 Measurement 2 Measurement 3 Mean ( ̅) 

Standard 
Deviation ( ) 

Part # 1      

Part # 2      

Part # 3      

Part # 4      

Part # 5      

Part # 6      

Part # 7      

Part # 8      

Part # 9      

Part # 10      

   
Grand Mean* 

Std. Deviation* 

 ̅  = __________ 

  ̅= _________ 

  
   = 

___________ 

*Grand Mean = average of  ̅’s; standard deviation of  ̅’s  => in Excel, use STDEV.S 
**Pooled Standard Deviation = SQRT(average of   ) =  ̂            

 ̂        √  ̅
  

 

 
        

  where m is #of measurements (3) and   ̅
  is the variance of the grand mean (not the 

pooled standard deviation). 

 

 ̂                                      ̂                                       ̂                           

 



www.manaraa.com

46 

 

  

Sources of Variability 
An engineers guide to understanding and attempting  
to control the inevitable  - variation 

Nature of Variability 

• Impossible to achieve perfect repetition 
• Throwing a football 
• Producing a precision part 

• Always variability from one try to the next 
• May be very small, but it exists 

Understanding Variability 

• Mean (µ)  =  Center of the data 

• Standard Deviation ( σ )   =  Spread of the data 

• Imagine if everyone in the class lined up with the tallest person in  
the center and decreasing height on either side 

Precision vs. Accuracy 

• Another description of a data set 
• Related to mean (µ) and standard deviation ( σ ) 

• Accuracy = consistently hitting the center of a target 
• Precision = consistently hitting the same area of a target 

Precision vs. Accuracy 

Accuracy is  
performing  
fairly well  
but with  
variation  
between  
attempts. 

Precision is  
performing  
very  
consistently  
between  
attempts but  
not necessarily  
well. 

Sources of Variability 

• 𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 
𝜎 𝑡𝑜𝑡𝑎𝑙 = 𝜎 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 2 + 𝜎 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 2 

• Two components make up Total Variability 

• 1) Process Variability  - ( 𝜎 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 2 ) 
• 2) Measurement Variability  – ( 𝜎 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 2 ) 
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From Dr. Vardeman: 

• “Basically,  I have a sandwich here with 50 slices of bread and  
49  pieces of cheese on  it.” 

Measurement Variability 

• From techniques used to measure parts 

• Device or Tool 
• Operator 
• Environment 

• Environment will be ignored in this lab 

Components of Measurement  
Variability 

• 1)  Repeatability Variation  – ( 𝜎 𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 2 ) 
• Single Operator 
• Single Device and Part 

• Multiple measurements made 

• 2)  Reproducibility variation  – ( 𝜎 𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 2 ) 
• Multiple operators 
• Single Device and Part 

• Multiple measurements made 

Equation of Measurement  
Variability 

• 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 
𝜎 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 = 𝜎 𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 2 + 𝜎 𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 2 

• This experiment will show how Process Variability can be  
determined by collecting data on Measurement Variation  
and Total Variation 
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APPENDIX B 

Study One Exams 
 

This appendix contains the exams administered to students in Study One. 

Pages 49 and 50 contain the pre-lab exam (written). 

Pages 51 through 54 contain the post-lab exam (written). 
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IE 248 Measurement Lab 
Pre-Lab Examinations 

Instructions:  Please write your name on the back of this exam.  There are five questions on two pages 

for a total of 25 points.  Answer each question to the best of your ability in the space provided.  Any 

writing outside of the box will be ignored.  You may use words or pictures as necessary.  You have 10 

minutes to complete the exam. 

 
1. A particular model of widget is specified to be exactly 3.0” wide.  A machining process has been set up to 

produce these widgets.  Is it possible for this machining process to produce widgets that meet the 

specification?  Explain your answer.  (5 points) 

 

 

 

 
2. Variability is introduced in both manufacturing processes and in measurement processes.   

(a) Explain the difference between process variability and measurement variability.  (4 points) 

 

 

 

 

(b) Does measurement variability affect process variability?  Explain your answer. (3 points) 

 

 

 

 

3. Explain the difference between accuracy and precision in the context of a measurement system. (3 points) 
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4. A machinist uses a digital micrometer to measure the thickness of the first metal part that was produced 

by a new machining process.  The reading on the micrometer was 1.7498".   

(a) If he takes nine additional measurements of the same part in the same way, will all of the 

measurements have the same reading?  Why or why not?  (3 points) 

 

 

 
(b) If four other machinists measure the same part once each, will they obtain the same reading as the 

machinist in part (a)?  Why or why not? (2 points) 

 

 

 

 

 

 

 

5. In question #3, the part was measured to be 1.7498".  The part has a specification of 1.750 +/- .001". 

(a) Assuming that measurement variation is negligible, has this part been produced to specification?  

(2 points) 

 

 

(b) What does your answer to (a) say about future parts produced by this process? (3 points) 
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IE 248 Measurement Lab 
Final Examination 

 

Instructions:   

1. Please write your name on the back of this exam and nowhere else. 

2. This exam is closed book.   

3. There are five questions for a total of 50 points.  There are four pages. 

4. Answer each item to the best of your ability in the space provided.  Any writing outside of the box will be 

ignored.  You may use words or pictures as necessary.   

5. You have 30 minutes to complete the exam. 
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1. A digital micrometer is used to measure the thickness of strands of wire produced by a new extrusion 

process.  List the types of variability reflected in the measurement data collected under each of the 

following scenarios.  Your choices are (A) Repeatability Variation, (B) Reproducibility Variation, and (C) 

Process Variation (write only the letters in the box). 

 

(a) (4 points) A single inspector takes five measurements of a single wire. 

 

 

(b) (4 points) A single inspector measures the first ten wires to come out of the process.  Each is measured 

once.  

 

 

 

(c) (4 points) Three different inspectors measure 30 of the next 100 wires to come out of the process. 

 

 

 

 

2. A mechanical engineer prepares a drawing for the J2-X rocket engine nozzle to be used in the (now-

cancelled) Ares V space vehicle at NASA.  The drawing calls for the nozzle throat to be precisely 77.85mm in 

diameter (no tolerance for error in this engine lest it malfunction and explode). 

(a) (5 points) Is it possible for the machinists at NASA to make the part to the engineer’s specification?  

Why or why not? 

 

 

 
 

(b) (5 points) At NASA, every finished part is verified independently by QA inspectors before being installed 

in the vehicle.  Assuming that this part has been produced to specification, how can it be measured to 

verify its diameter is precisely 77.85mm? 
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3. Figures 1 and 2 below show the distribution of measurements taken from the same feature on a set of 70 

aluminum blocks.  The measurements in Figure 1 were obtained by several operators each using a digital 

caliper to measure the feature, while those in Figure 2 were obtained using a Coordinate Measuring 

Machine (CMM).  (A CMM is a computer-controlled device used to obtain high-quality measurements, but it 

takes much longer to measure each part.)  Each block was measured exactly once under each measurement 

system. 

   
 FIGURE 1: MEASUREMENTS FROM CALIPERS FIGURE 2: MEASUREMENTS FROM CMM 

(a) (5 points) Which of the two systems shows greater variation?  Why? 

 

 

 

 

 

 

 

(b) (5 points) How do the two measurement systems compare in terms of accuracy and precision? 

 

 

 
 

(c) (5 points) Choose one of the two measuring systems.  What would you do to improve the accuracy 

and/or precision of the system? 

  

mean = 1.2519 in.      std. dev. = 0.0337 in. mean = 1.2469 in.      std. dev. = 0.0020 in. 
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4. (5 points) A part has a feature with a specified tolerance of +/- .025".  A particular operator using a digital 

caliper to measure the feature has a measurement standard deviation of .03".  Is this measurement system 

acceptable (i.e. would you use it to accept/reject parts)?  Explain. 

 

 

 

 

 

5. (8 points) Tecton Industries in Spencer, Iowa produces a variety of precision-machined components for the 

hydraulic and hydrostatic transmission industry.  These components have tolerances of +/- .005" and are 

produced in a fully-automated CNC machining center.  A quality inspector uses a digital caliper to verify 

every part and a CMM to verify every 25
th

 part that comes off the production line.  (The CMM measures 

multiple locations on the part, thus performing a more thorough verification). 

If a part fails the caliper inspection, it is not sent to the CMM.  Currently, about 1 out of every 100 parts fails 

inspection (counting both CMM- and inspector-failed parts). 

Tecton recently tripled their production rate in response to customer demand.  They still use the same CNC 

machining center, but they added two additional shifts (and two more quality inspectors).  Each inspector 

uses his/her favorite tool to measure; two still use the caliper and one prefers to use a micrometer.  After 

the rate increase, Tecton saw a large increase in the number of parts failing inspection (up to about 1 in 30). 

 

List at least two possible causes for this issue.  Given the information you have, which cause is more likely, 

and what would you do to address it?  Explain. 
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APPENDIX C 

Study Two Materials 
 

This appendix contains the lab materials presented to students in Study Two. 

Pages 56 through 58 contains the basic lab procedure given to students in the control group. 

Pages 59 through 63 contain the detailed lab handout provided to students in both experiment groups. 

Pages 64 and 65 contain data collection tables provided to students in both groups. Note that students 

used a total of four copies of each table. 

Pages 66 and 67 contain the discussion questions that all students were assigned following the lab. 

For the laboratory slides presented to students, refer to pages 46 and 47 in Appendix A. 
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Sources of Variability 
IE 248 Lab Experiment 1 

Lab Objectives 
To investigate sources of variability and learn how to separate different components of variability using 

statistics and proper experiment design. 

Introduction 
Everything that can physically affect a production process introduces a portion of variability.  As 

engineers, it is our job to understand and attempt to control that variability.  Variability can be summed 

up into two main components:  process variability and measurement variability.  Process variability 

describes the differences from part to part in the output of a process, while measurement variability 

applies to the techniques used to measure those parts.  Equation 3 illustrates this concept. 

                         √        
               

  

Equation 1:  Components of Total Variability 

Measurement Variability 
When variability is introduced in the measuring process, it can be particularly problematic because we 

can only “see” process variability through measurements.  It is very important that measurement 

variability be kept low (less than 10% of the overall tolerance window); otherwise, engineers will not be 

able to tell the difference between process variability and measurement variability.  This is one of the 

main goals of the field of metrology – the science of measuring. 

In this lab, we are going to take an in-depth look at measurement variability.  As with process variability, 

there are multiple sources of measurement variability.  These sources include the device itself, the 

operator, the environmental conditions (if they change over time while measurements are taken), and 

the measurement technique.  Some of those, such as environmental conditions, can be ignored, 

especially for measurements taken on the same day at the same time.  Others, such as operator 

variability, can be substantial enough to ruin an otherwise-good measurement process. 

We classify the variability of a measurement system as falling under two main components: 

 Repeatability Variation, which is the variability associated with the measurements from a single operator 

using a single device to measure a single part multiple times 

 Reproducibility Variation, which is the variability associated in the measurements from multiple 

operators using a single device to measure a single part multiple times. 

It helps to think about repeatability variation as something that is associated with a particular device 

and operator combination, while reproducibility variation is associated with the differences in 
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measurement techniques between operators1.  These two components add together to form 

measurement variability (see Equation 4). 

                                     √              
                   

  

Equation 2:  Components of Measurement Variability 

Procedure 
You will be conducting this procedure in groups of no more than five members.  The procedure for this 

lab is divided into two sections.  The first part allows you to evaluate the components of measurement 

variability, while the second allows you to evaluate process variability. 

Note: in all gage readings, use a maximum of three significant figures.  In all calculations, carry four 

significant figures unless otherwise instructed. 

Part One 
Your group will be given a single measurement device (either a digital caliper or micrometer) and a 

single (aluminum or plastic) part.  This will form the basis for the measurement system.  Each person in 

the group will use the device to measure the part.  This process will be repeated five times, and the 

results of the measurements will be recorded in Table 1.  Be sure to mark the part type, part number, 

and gage type before you begin measuring. 

Your group will then be given the other measurement device.  Repeat the process for the other device.  

Since the device is different, we will treat it as a different measurement system.  (Is there any evidence 

to show that one measurement system is more accurate or precise than the other?)  

Finally, the process of measuring with both caliper and micrometer will be repeated for the other part 

(aluminum or plastic).  In total, you will take four sets of measurements: aluminum and plastic part 

measured with both caliper and micrometer.  

At the end of part two, you will have an estimate of the measurement variability associated with each of 

the two measurement systems for both the aluminum and plastic part. 

Part Two 
Your group will be given three measurement devices (either calipers or micrometers) along with ten 

parts (aluminum or plastic).  Three group members should select a part at random and take a 

measurement.  The other group member(s) should record the measurement into two copies of Table 2 

(you are making duplicate records so that data can be shared with the other group).  Be sure to mark 

the part type and gage type before you begin measuring. 

Repeat this process until all of the parts have been measured exactly three times.  Recording and 

measurement duties should be shared among all group members. When you have finished recording 

measurements, your measurement devices will be switched with the other group.  Repeat the 

measurement and recording process for the parts again. 
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After you have taken measurements on all 10 parts, exchange one set of your data tables with the other 

group.  You now have two data sets, one for each part measured with both devices.  After you are 

finished with Part 2, proceed through the calculations to determine the process (part-to-part) and 

measurement variability.  (How are these numbers affected by the precision of the measurement 

system?) 

In Computer Lab 
Once the data has been recorded into the table, use a calculator or spreadsheet to compute the mean 

and standard deviation of each column in the table.  These values are estimates of the repeatability 

variation for each combination of operator and device.  (Is there any evidence to show that one 

operator is less accurate or precise in his or her measurements?)  Note: all units of mean and standard 

deviation are in inches. 

Next, compute the grand mean (the mean of the means) and the standard deviation of the means, 

which you will use to estimate the reproducibility variation.  Finally, compute the pooled standard 

deviation, which is an estimate of the overall repeatability variation for the measurement system (an 

“average” repeatability variation, but you must compute it by using variance in each column -   ).  

Together, repeatability and reproducibility form an upper bound (a worst-case scenario) for 

measurement variability in this measurement system.  (Keep in mind that these are estimates only; you 

will learn how to apply the proper formulas to achieve better estimates in IE 361.) 

Discussion Items 
On Blackboard, there are specific discussion questions that your group will need to answer.  Please 

follow the directions on Blackboard to complete the assignment.
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Sources of Variability 
IE 248 Lab Experiment 1 

Lab Objectives 
To investigate sources of variability and learn how to separate different components of variability using 

statistics and proper experiment design. 

Introduction 
Variability is defined as “the quality of being uneven and lacking uniformity2.”  In other words, variability 

is an inevitable part of life.  It is impossible to achieve perfect repetition, whether you are throwing a 

football or producing a precision part for the International Space Station.  There is always some degree 

of variability from one try to the next; it may be very small, as with the precision part for the ISS, or very 

large, as with your football throw.  Variability in the world is the main reason that engineers exist. 

Everything that can physically affect a production process introduces a portion of variability.  As 

engineers, it is our job to understand and attempt to control that variability.  Proper control of variability 

allows us to reduce uncertainty, so we can produce cars that start, roads that are smooth, and planes 

that don’t crash.  Too much variability leads to great uncertainty, and when it is left unchecked, you 

often end up hearing about it in the news.  The question then is “How do we account for all of the 

sources of variability?” 

Understanding Variability – Mean and Standard Deviation 
To control variability, we must first understand what it looks like.  In statistics, there are two essential 

ways of describing a set of data.  The first is mean ( ̅), which tells us where the center of the data is.  The 

second is standard deviation ( ), which indicates the spread of the data.  Each physical source of 

variability contributes to variability in our data sets. 

Figure 1 illustrates the concepts of mean and standard deviation using several normal distribution plots.  

Notice how the curves get wider with increasing standard deviation, and how they shift with a change in 

the mean.  Mean and deviation are two different concepts, and they both must be considered when 

accounting for variability in our data. 

 
Figure 1: Standard Normal Distribution with Various Means and Standard Deviations 

                                                           
2
 http://www.thefreedictionary.com/variability 
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In a measurement system, another way of looking at mean and standard deviation is by understanding 

accuracy and precision.  A good way of thinking about accuracy and precision is to look at a dart board, 

as in Figure 2.  Accuracy refers to the direction that one is “aimed,” while precision refers to the degree 

with which one is able to hit the target consistently.  In this figure, it is clear that accuracy and precision 

are two completely separate ideas. 

 

Figure 2:  Accuracy vs. Precision using Targets 

Sources of Variability 
As mentioned previously, every physical component of a process adds its own portion of variability.  

Some of these sources of variability are small and can be ignored, while others are quite large and must 

be reduced or eliminated.  As an example, let’s examine a standard milling process for a block of 

aluminum.  The aluminum must be clamped into a horizontal mill, where a face mill cutter then shaves 

off approximately .03" from the top of the block to cut it down to the correct height.  The process is 

supposed to produce blocks that are 1.45" +/- .005", and this dimension is verified at the end of the 

process by using a digital micrometer. 

Where is the variability in this process?  First, not all of the aluminum blocks start out the exact same 

size.  Differences in initial height cause slightly different amounts of material to be shaved off with the 

face mill.  When more metal is cut, the blocks heat up and expand slightly, causing the dimensions to be 

just a little off.  Next, the mill has to be set to the correct depth each time a block is placed on it.  The 

height is reported by a digital gage which has a small (probably negligible) amount of variability 

associated with each reading.  The block is clamped into a vice each time, but there is still a small 

amount of variability in its lateral and vertical position.  Changes in temperature, humidity, and pressure 

from day to day can cause the material to change shape or to react differently to the cutting process.  

Finally, there is a small amount of variability in the measuring process at the end. 

All of this variability can be summed up into two main components:  process variability and 

measurement variability.  Process variability describes the differences from part to part in the output of 

a process, while measurement variability applies to the techniques used to measure those parts.  

Equation 3 illustrates this concept. 

                         √        
               

  

Equation 3:  Components of Total Variability 
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Measurement Variability 
When variability is introduced in the measuring process, it can be particularly problematic because we 

can only “see” process variability through measurements.  It is very important that measurement 

variability be kept low (less than 10% of the overall tolerance window); otherwise, engineers will not be 

able to tell the difference between process variability and measurement variability.  This is one of the 

main goals of the field of metrology – the science of measuring. 

In this lab, we are going to take an in-depth look at measurement variability.  As with process variability, 

there are multiple sources of measurement variability.  These sources include the device itself, the 

operator, the environmental conditions (if they change over time while measurements are taken), and 

the measurement technique.  Some of those, such as environmental conditions, can be ignored, 

especially for measurements taken on the same day at the same time.  Others, such as operator 

variability, can be substantial enough to ruin an otherwise-good measurement process. 

We classify the variability of a measurement system as falling under two main components: 

 Repeatability Variation, which is the variability associated with the measurements from a single operator 

using a single device to measure a single part multiple times 

 Reproducibility Variation, which is the variability associated in the measurements from multiple 

operators using a single device to measure a single part multiple times. 

It helps to think about repeatability variation as something that is associated with a particular device 

and operator combination, while reproducibility variation is associated with the differences in 

measurement techniques between operators3.  These two components add together to form 

measurement variability (see Equation 4). 

                                     √              
                   

  

Equation 4:  Components of Measurement Variability 

Statistics and Variability 
The field of statistics exists because variability is an unavoidable component of everything.  Statistics is 

concerned with the proper methods of collecting, summarizing, and interpreting data, all within the 

context of real-world variability.  Using statistics, it is possible to separate out the components of 

variability.  While more in-depth statistical concepts will be presented in later courses (particularly IE 

361), it is useful to gain a basic understanding of the statistical concepts that will be used in the 

collection and analysis of data.  Those concepts will be highlighted as the lab procedure unfolds. 

 

  

                                                           
3
 Vardeman and Morris, IE 361 Module 3, 2011 
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Procedure 
You will be conducting this procedure in groups of no more than five members.  The procedure for this 

lab is divided into two sections.  The first part allows you to evaluate the components of measurement 

variability, while the second allows you to evaluate process variability. 

Note: in all gage readings, use a maximum of three significant figures.  In all calculations, carry four 

significant figures unless otherwise instructed. 

Part One 
Your group will be given a single measurement device (either a digital caliper or micrometer) and a 

single (aluminum or plastic) part.  This will form the basis for the measurement system.  Each person in 

the group will use the device to measure the part.  This process will be repeated five times, and the 

results of the measurements will be recorded in Table 1.  Be sure to mark the part type, part number, 

and gage type before you begin measuring. 

Your group will then be given the other measurement device.  Repeat the process for the other device.  

Since the device is different, we will treat it as a different measurement system.  (Is there any evidence 

to show that one measurement system is more accurate or precise than the other?)  

Finally, the process of measuring with both caliper and micrometer will be repeated for the other part 

(aluminum or plastic).  In total, you will take four sets of measurements: aluminum and plastic part 

measured with both caliper and micrometer.  

At the end of part two, you will have an estimate of the measurement variability associated with each of 

the two measurement systems for both the aluminum and plastic part. 

Part Two 
Your group will be given three measurement devices (either calipers or micrometers) along with ten 

parts (aluminum or plastic).  Three group members should select a part at random and take a 

measurement.  The other group member(s) should record the measurement into two copies of Table 2 

(you are making duplicate records so that data can be shared with the other group).  Be sure to mark 

the part type and gage type before you begin measuring. 

Repeat this process until all of the parts have been measured exactly three times.  Recording and 

measurement duties should be shared among all group members. When you have finished recording 

measurements, your measurement devices will be switched with the other group.  Repeat the 

measurement and recording process for the parts again. 

After you have taken measurements on all 10 parts, exchange one set of your data tables with the other 

group.  You now have two data sets, one for each part measured with both devices.  After you are 

finished with Part 2, proceed through the calculations to determine the process (part-to-part) and 

measurement variability.  (How are these numbers affected by the precision of the measurement 

system?) 

In Computer Lab 
Once the data has been recorded into the table, use a calculator or spreadsheet to compute the mean 

and standard deviation of each column in the table.  These values are estimates of the repeatability 
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variation for each combination of operator and device.  (Is there any evidence to show that one 

operator is less accurate or precise in his or her measurements?)  Note: all units of mean and standard 

deviation are in inches. 

Next, compute the grand mean (the mean of the means) and the standard deviation of the means, 

which you will use to estimate the reproducibility variation.  Finally, compute the pooled standard 

deviation, which is an estimate of the overall repeatability variation for the measurement system (an 

“average” repeatability variation, but you must compute it by using variance in each column -   ).  

Together, repeatability and reproducibility form an upper bound (a worst-case scenario) for 

measurement variability in this measurement system.  (Keep in mind that these are estimates only; you 

will learn how to apply the proper formulas to achieve better estimates in IE 361.) 

Discussion Items 
On Blackboard, there are specific discussion questions that your group will need to answer.  Please 

follow the directions on Blackboard to complete the assignment. 
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Table 1:  Measurement Variability (Repeatability And Reproducibility) 

Part (circle one):     Aluminum   /   Plastic     Tool (circle one):   Caliper   /   Micrometer        Part # ____ 

   

 
 

  Student 1 Student 2 Student 3 Student 4 Student 5 

 
Measurement 1           

 
Measurement 2           

 
Measurement 3           

  

 
Measurement 4           

  

 
Measurement 5           

  

R
e

p
e

at
ab

ili
ty

 

Mean ( ̅)   ̅̅ ̅= _________   ̅̅ ̅= _________   ̅̅ ̅= _________   ̅̅ ̅= _________   ̅̅ ̅= _________ 

Grand Mean* 

Standard 

Deviation* 

 ̅ = ___________ 

  ̅= ___________ 

Standard Deviation 
( ) 

  = _________   = _________   = _________   = _________   = _________ 
Pooled Standard 
Deviation** 

   = ___________ 

*Grand Mean = average of  ̅’s; standard deviation of  ̅’s   => in Excel, use STDEV.S 

**Pooled Standard Deviation = SQRT(average of   ) =  ̂              

 ̂                √         ̅
  

 

 
        

   where m is #of measurements (5) and   ̅
  is the variance of the grand mean (not the pooled 

standard deviation). 

 

 ̂                                            ̂                                           ̂                                 
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Table 2:  Total Variability 
 

Part (circle one):     Aluminum   /   Plastic   Tool (circle one):      Caliper   /   Micrometer 

 
Measurement 1 Measurement 2 Measurement 3 Mean ( ̅) 

Standard 
Deviation ( ) 

Part # 1      

Part # 2      

Part # 3      

Part # 4      

Part # 5      

Part # 6      

Part # 7      

Part # 8      

Part # 9      

Part # 10      

   
Grand Mean* 

Std. Deviation* 

 ̅  = __________ 

  ̅= _________ 

  
   = 

___________ 

*Grand Mean = average of  ̅’s; standard deviation of  ̅’s  => in Excel, use STDEV.S 
**Pooled Standard Deviation = SQRT(average of   ) =  ̂            

 ̂        √         ̅
  

 

 
        

   where m is #of measurements (3) and   ̅
  is the variance of the grand mean 

(not the pooled standard deviation). 

 

 ̂                                      ̂                                       ̂                           
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Measurement Lab Discussion Questions 
Directions: 
Answer the questions below the heading for each question.  Then save and submit this document for 

grading.  All group member names must be listed, in alphabetical order.  Submit one copy per group 

only. 

Grading: 
These questions are worth roughly half of the credit you will receive for this laboratory.  They will be 

graded based on the following criteria: 

a. 45% - answers provide correct and detailed information related to the question 

b. 35% - figures are neat and tidy, and they clearly offer evidence to support the claims made in each 

corresponding answer 

c. 20% - polish: attention to detail in writing style and construction of figures; headings are present; sources 

are cited; correct spelling, grammar, punctuation, flow, etc. 

Group Names: 
(Insert Names Here) 

Questions: 
1. Explain the difference between process variability and measurement variability.  In a good measurement 

system, what does the relationship between these two components look like? 

 

2. Perform a statistical analysis as directed in the procedure section.  Report your values for Repeatability, 

Reproducibility, and Process variation for both part types and gage types (this will best be presented in a 

table of some sort).  Comment on the magnitude of all components of variability in each system – explain 

why some variability components are higher than others. 

 

3. Choose one of the copies of Table 1.  Create a bar chart showing mean and standard deviation for each 

operator.  What evidence do these data provide that one operator is more or less precise than the others 

when taking measurements? 

 

4. Present histograms of the Table 2 data for each combination of part and measuring instrument (use the 

JMP program to create the histograms).  Explain what the histograms show.  What do they say about the 

best way to measure each part? 

 

5. Comment on the differences between the caliper measurement system and the micrometer 

measurement system in terms of overall measurement variability. 

a. For each tool and part, calculate the percentage of total variability that is attributable to 

measurement variability (you will need to use variance,   , for this calculation). 

b. What does (a) indicate about either system of measurement (e.g. are they acceptable)?  Is there 

any indication that one measurement system is more accurate or precise than the other? 
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c. What are your recommendations regarding the measurement of the plastic and aluminum parts 

(i.e. how should they be measured)? 

 

6. Using the data you have, is it possible to establish the accuracy of these measurement systems?  Explain 

why or why not.  If not, what additional information would you need? 

 

7. Provide at least one way that measurement variability can be reduced in each setup of this experiment.  

Hint: do not discuss factors that did not affect your results (i.e. temperature in the room). 
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APPENDIX D 

Study Two Surveys 
 

This appendix contains the surveys used in Study Two. 

The pre-lab survey (Student Information Questionnaire, pages 69 through 72) was given to students 

before they formally participated in the lab; one of the questions on the survey (the last question) 

helped sort the students into their respective lab sessions. 

The exit survey (page 73) was given to students immediately after they completed the final exam.
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Student Information Questionnaire 
Question 1 
I am a ... 

 
 Female 

 
 Male 

 
 Other 

 
 Prefer not to answer 

Question 2 
Please select your major. 

 
 Industrial Engineering 

 
 Mechanical Engineering 

 
 Aerospace Engineering 

 
 Civil, Environmental, or Construction Engineering 

 
 Electrical, Computer, or Software Engineering 

 
 Materials Engineering 

 
 Chemical/Biological Engineering 

 
 Agriculture/Biosystems Engineering 

 
 Undeclared Engineering 

Question 3 
Please indicate the number of semesters you have attended Iowa State.  If you have spent a semester 

studying abroad or in a co-op or internship, do not include that semester in your count. 

 
 1-2 semesters 

 
 3-4 semesters 

 
 5-6 semesters 

 
 More than 6 semesters 

Question 4 
Please enter your ACT score.  If you do not know your ACT score, you may find it on the Iowa State 

CMS site, under your Academic Profile, scroll down to Teacher Certification 

Data.  Click https://ecms.eng.iastate.edu/students/ 

If you still do not have your score, enter 0. 

 

https://ecms.eng.iastate.edu/students/
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Question 5 
Please enter your Iowa State GPA on a scale of 0.0 to 4.0. 

 
 

Question 6 
Please enter your high school or community college GPA (whichever school you attended for at least 4 

semesters prior to coming to Iowa State) on a scale of 0.0 to 4.0.  Note: the maximum value is 4.0; if your 

high school GPA could be higher than 4.0, divide your GPA by the maximum it could have been, then 

multiply by 4.0 to arrive at your real GPA. 

 
 

Question 7 
Please describe your overall level of knowledge and/or experience dealing with statistical concepts, 

including probability, variability, and statistical distributions. 

 
 Good familiarity (multiple statistics courses taken at the college level) 

 
 Some familiarity (one course taken, either college or high school level) 

 
 Basic working knowledge only (no dedicated statistics course taken, but you have been exposed to 

statistics concepts in your college coursework). 

 
 No practical experience in probability and statistics 

 

Question 8 
Please indicate your level of comfort working in groups in hands-on laboratory classes. 

 
 Very comfortable 

 
 Somewhat comfortable 

 
 Neither comfortable nor uncomfortable 

 
 Somewhat uncomfortable 

 
 Very uncomfortable 

 
 Not Applicable 

Question 9 
Of the courses you indicated in the previous question, how many of those courses required some type of 

formal lab write-up following the lab session? 

 
  No courses 

 
  1-2 courses 

 
  3-4 courses 

 
  More than 4 courses 
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Question 10 
Of all your past hands-on laboratory courses, how many of those courses had lecture components which 

were deliberately synchronized with the lab component (where the lecture material arrived within a 

week of the laboratory session)? 

 
 No courses 

 
 1-2 courses 

 
 3-4 courses 

 
 More than 4 courses 

Question 11 
The same researcher (Robert Mayer) conducted a similar study during the spring semester of 2012.  Were 

you a participant in this previous study?  Note: your answer here will not affect your ability to participate 

in the present study, but will be used to control for factors that may influence the results of this study. 

 Yes  No 

Question 12 
Have you been diagnosed with any type of learning disability? Note: it is important to answer this 

question honestly. Your answer here remains confidential and will not affect your ability to receive extra 

credit for participating in the study. 

 Yes  

 No 

Question 13 
Which class would you like the extra credit applied to? 

 
 IE 271 

 
 IE 148 

 
 ENGR 160 

 
 IE 448 

 
 ME 324 
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Question 14 
Please indicate which of the following courses (if any) you have taken or are currently taking at the 

college level.  If you have taken a course that is not listed, but is substantially similar to a course that is 

listed, please check the "other" box, then list and describe the course on the next question.  Check all 

courses that apply. 

 
 ENGR 160/IE 148 or equivalent 

 
 IE 248 

 
 IE 348 

 
 ME 324 

 
 Stat 231 

 
 Stat 101 

 
 Stat 447 

 
 Stat 401 

 
 Stat 402 

 
 Stat 226 

 
 Stat 305 

 
 IE/Stat 361 

 
 Other engineering hands-on laboratory course 

 
 Other course that addressed measurement variability as a major course topic (you may be asked to 

describe the course). 
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Exit Survey 
Question 1 
My group members contributed equally to the lab assignment. 

 
1. Strongly 

Agree   
 
2. Agree 

  
 
3. Neither 

Agree nor 

Disagree 

  
 
4. Disagree 

  
 
5. Strongly 

Disagree   
 
6. Not 

Applicable   

Question 2 
The lab assignment was helpful in learning the material. 

 
1. Strongly 

Agree   
 
2. Agree 

  
 
3. Neither 

Agree nor 

Disagree 

  
 
4. Disagree 

  
 
5. Strongly 

Disagree   
 
6. Not 

Applicable   

Question 3 
I did a substantial majority of the work in my group. 

 
1. Strongly 

Agree   
 
2. Agree 

  
 
3. Neither 

Agree nor 

Disagree 

  
 
4. Disagree 

  
 
5. Strongly 

Disagree   
 
6. Not 

Applicable   

Question 4 
I feel that I did well on the pre-lab exam. 

 
1. Strongly 

Agree   
 
2. Agree 

  
 
3. Neither 

Agree nor 

Disagree 

  
 
4. Disagree 

  
 
5. Strongly 

Disagree   
 
6. Not 

Applicable   

Question 5 
I feel that I did well on the post-lab exam. 

 
1. Strongly 

Agree   
 
2. Agree 

  
 
3. Neither 

Agree nor 

Disagree 

  
 
4. Disagree 

  
 
5. Strongly 

Disagree   
 
6. Not 

Applicable   

Question 6 
My group members contributed equally to the lab assignment. 

 
1. Strongly 

Agree   
 
2. Agree 

  
 
3. Neither 

Agree nor 

Disagree 

  
 
4. Disagree 

  
 
5. Strongly 

Disagree   
 
6. Not 

Applicable   
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APPENDIX E 

Study Two Exams 
 

This appendix contains the exams administered to students in Study Two. 

Pages 75 through 79 contain the pre-lab exam.  The exam was administered entirely on Blackboard, so 

the format does differ substantially from that presented in the document.  Questions were presented 

one at a time, and students could interact with and backtrack through the exam. 

Pages 80 through 82 contain part one of the post-lab exam (multiple choice).  This portion of the exam 

was administered via Blackboard. 

Pages 83 through 87 contain part two of the post-lab exam (written).  This portion of the exam was 

handed to the students at the same time they began the multiple choice portion of the exam. 
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Pre-Lab Quiz 
General Problem-Solving Questions 
Question 1 (2 points) 
Four problems arise at work simultaneously. Specify the order in which they should be solved. 

a. A package must be shipped to your west coast office by 4:00. 

b. Your boss needs a report on profit projections for a 1:00 meeting. 

c. You accidentally delete the computer file containing the rough draft of the profit report. 

d. The production line stops due to a part shortage, which only you can fix. 

Question 2 (1 point) 
Consider the following group of statements: “Dr. James Scott was the president of Harvard University. 

Every president of Harvard University drank vodka. Dr. Scott drank vodka in large quantities. Whoever 

drinks vodka in large quantities must be an alcoholic.” Which of the following must be true if all the 

above are true? 

a. All Harvard University presidents were alcoholics.  

b. Dr. James Scott was an alcoholic.  

c. Those who drink vodka must be alcoholics.  

d. Only the presidents of Harvard University drank alcohol.  

e. None of the above is true. 

Question 3 (1 point) 
The following hypothetical conversation takes place: 

James: President Bush’s decision to invade Iraq was based on fallacious information regarding Saddam 

Hussein’s research program into mass-destruction weapons.  

William: You don’t understand that without the American invasion of Iraq and the eventual deposition 

of Saddam from power, he would continue to persecute the Kurds. 

True or False: The two people participating in the conversation are addressing the same issue. 

Question 4 (1 point) 
A policewoman has been asking Mr. Wang and Ms. Vernon questions about a traffic accident.  She  asks 

Mr. Wang, who was  one  of the  people  involved  in the  accident, whether  he had  used  his signal.  

Mr. Wang answers, "Yes, I did use my signal." 

Ms. Vernon had been driving a car which was not involved in the accident.  She tells the officer, "Mr. 

Wang did not use his signal. But this didn't cause the accident." 

Choose which of the italicized statements, if either, is more credible. 

a. Both statements are equally credible 

b. The statement by Ms. Vernon is more credible 

c. The statement by Mr. Wang is more credible 

d. Both statements are equally suspect 
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Question 5 (2 points) 
You read a story in the newspaper about salary negotiations with public transportation workers. The 

workers are threatening to go on strike tomorrow if their demands for higher wages and better benefits 

are not met. What can you infer from this news story? 

a. Health insurance premiums are very expensive. 

b. Bus fares will increase in the next few weeks. 

c. People who ride the bus should look for possible alternative transportation. 

d. Employers never like to meet salary demands. 

Specific Subject-Matter Questions 
Question 6 (3 point) 
According to Merriam-Webster, a process is “a series of actions or steps taken to achieve an end.”  Using 

this definition of process, indicate which of the following italicized items describes the output of a 

process by placing a check next to the item. 

a. A machine press produces 1,000 stamped metal parts over a one hour period (the parts 

produced by the machine) 

b. A quality inspector selects 100 parts at random from a batch and measures the width of 

each part (the measurements taken by the quality inspector) 

c. A bottle-filling machine dispenses 20oz of soda into 100 bottles (the bottles full of soda) 

d. A single piece of equipment used on the International Space Station is installed into the 

Space Shuttle payload bay (the hardware secured inside of the payload bay) 

Question 7 (5 points) 
An engineering specification calls for a machine shaft to be produced with a width of 3.0 inches.  The 

specification does not allow for deviations from this 3.0-inch width.  Is it possible for any machining 

process to produce this part to specification? 

Question 8 (10 points) 
The picture below shows a series of measurements taken from a machining process (where a single 

lathe is used to cut away metal from base stock to produce the finished part).  This data is the result of a 

quality engineer using a digital caliper to measure the width of every 25th part out of the machine.  As 

the data shows, there is variation from one measurement to the next .  Please indicate which of the 

following factors (if any) affected each measurement such that it could explain the small differences in 

values between measurements. 

 

a. Environmental conditions (temperature, humidity, pressure) changing over time 
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b. Differences in the tools installed in the machine (they wear down over time, so must be 

replaced every so often) 

c. Variation in the quality engineer’s technique when measuring each part 

d. Vibrations in the floor caused by a construction crew just outside of the building 

e. A faulty coolant pump in the machine, which stops for a few minutes at a time, then 

starts back up 

f. The discovery that the digital caliper was out of calibration – every measurement taken 

was .003 inches less than the true value. 

Question 9 (3 points) 
A part is specified to be 5 inches wide with .001-inch bi-lateral tolerances (5.00 ± .001 inches).  To verify 

the finished part, an experienced operator uses a standard ruler, which has 1/32-inch markings on it.  Is 

this measurement system acceptable? 

Question 10 and 11 (3 points each) 
Choose the option that best describes the target next to the letter [10]"C" / [11]"B" in the figure below. 

 

a. Neither accurate nor precise 

b. Precise but not accurate 

c. Accurate but not precise 

d. Both accurate and precise 

Question 12 (2 points) 
Suppose we have a set of measurements of a system.  What statistical value would give us the best 

indication of a system’s precision? 

a. Mean 

b. Standard Deviation 

c. p-Value 

d. t-Ratio 

Question 13 (2 points) 
True/False In terms of accuracy/precision in a target analogy, precision means that we consistently hit 

the center of the target. 
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Probabilistic and Statistical Reasoning Questions 
Question 14 (2 points) 
A coin has been tested and proven to be fair within a reasonable tolerance.  This coin is flipped 8 times.  
The resulting sequence of heads/tails is H-T-T-T-H-T-T-T.  For the 9th flip of the coin, choose the option 
below that best describes the probability the coin will land heads-up. 

a. The probability is greater than 60% 
b. The probability is between 50% and 60% 
c. The probability is about equal to 50% 
d. The probability is between 40% and 50% 
e. The probability is less than 40% 

Question 15 (2 points) 
A different coin is flipped 25 times.  The resulting sequence contains 21 tails and 4 heads.  For the 26th 
flip of the coin, choose the option below that best describes the probability the coin will land heads-up. 

a. The probability is greater than 70% 
b. The probability is between 50% and 70% 
c. The probability is about equal to 50% 
d. The probability is between 30% and 50% 
e. The probability is less than 30% 

Question 16 (2 points) 
Poker Chips, Part 1. A black bag contains 50 red chips and 50 blue chips all mixed up.  For each trial, you 

shake the bag, pull a chip out, write down the color, then put it back.  Which of the following sequences 

is most likely to result from doing this five times? 

a. R R R b b 
b. b R R b R 
c. b R b b b 
d. R b R b R 
e. All four sequences are equally likely. 

Question 17 (2 points) 
Poker Chips, Part 2. Listed below are the same sequences of R's and b's as listed in Part 1. Which of the 

sequences is least likely to result from the same procedure followed in part 1? 

Question 18 (5 points) 
Dr. Jackman computed the grade of every student in the IE 448 class at the end of the fall semester.  The 

average (out of 100) was 74.1, with a standard deviation of 15.7.  Assume that the grades were 

symmetrically (normally) distributed, and that the assessment method used in the course accurately 

measured conceptual knowledge.  What is the implied “population” (the subject studied) in these 

statistics? 

a. Every student who completed IE 448 in the fall semester 
b. Any single student who completed IE 448 in the fall semester 
c. The conceptual knowledge conveyed to students in IE 448 that semester  
d. Dr. Jackman's ability to teach IE 448 that semester 

Question 19 (5 points) 
Two parts, A and B, had their diameters measured several times.  Given the degree of uncertainty 

involved in the measurement process, we are 95% confident that Part A is between 2.997 and 3.001 
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inches in diameter.  Likewise, Part B is between 3.000 and 3.010 inches in diameter.  Assume calibrated 

measurement devices and symmetrical distributions.  Select the statement that is best supported by this 

data. 

a. Part B is larger than Part A by 0.006 inches, on average 
b. Parts A and B are the same size 
c. Parts A and B are not significantly different in size 
d. Part B was produced with less precision than Part A 

Specific Subject-Matter Questions 
Question 20 (3 points) 
In general, measurement error describes 

a. Mistakes made by operators while using measuring tools 
b. Inconsistencies in the readings of measurements from a specific device 
c. Unavoidable variability within the measurement process  
d. Measurements that are not accurate or precise 

Question 21/22 (3 points each) 
Part 1 of 2: A process can be characterized as having a stable component and at least one variable 

component.  When computing statistics from the output of a process,  

(a) which component is best described by the mean? 

Part 2 of 2: which component is best described by the standard deviation? 
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Post-Lab Exam, Part 1: Multiple Choice 
General Problem-Solving Questions 
Question 1 (2 points) 
Mrs. Carson took a taxi to meet her three friends for lunch. They were waiting for her outside the 

restaurant when she pulled up in the car. She was so excited to see her friends that she left her tote bag 

in the taxi. As the taxi pulled away, she and her friends took notice of the license plate number so they 

would be able to identify the car when they called the taxi company. 

#1: The four women seem to agree that the plate starts out with the letter J. 

#2: Three of them agree that the plate ends with 12L. 

#3: Three of them think that the second letter is X, and a different three think that the third letter is K. 

The four license plate numbers below represent what each of the four women thinks she saw. Which 

one is most likely the license plate number of the taxi? 

a. JXK 12L   

b. JYK 12L   

c. JXK 12H   

d. JXX 12L 

Question 2 (2 points) 
Determine who among the below provided experts would be the most reliable source to settle the 

following issue: “Does nudity on television contribute to chauvinistic attitudes of young people toward 

women?”  

a. The president of the National Association of Broadcasters   

b. A sociology professor   

c. The president of the American Civil Liberties Union   

d. A television talk show host 

 

Question 3 (2 points) 
Determine whether the two people participating in the following conversation are addressing the same 
issue. 
Michelle: "I think that we should ban advertisements for striptease dancers, because I see striptease as 
being demeaning and exploitative." 
Natasha: Relax. "These advertisements depict both male and female strippers, so it is not as bad as you 

think." 

True or False: The two people participating in the conversation are addressing the same issue. 
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Question 4 (2 points) 

Consider the following statement and decide which part is necessary for this argument to be complete: 

“Everything that exists has a cause of its existence. The universe must have a cause of its existence, for it 

exists. If the universe has a cause of its existence then that cause must be the first cause. Therefore, God 

exists.” The described passage is missing: 

a. Conclusion: "God exists because everything that exists has a cause."   

b. Premise: "The universe has a beginning of its existence."   

c. Premise: "God is the first cause."   

d. Premise: "Not all existence requires a cause."   

e. Conclusion: "The existence of God explains the existence of causality." 

Question 5 (2 points) 
Rita, an accomplished pastry chef who is well known for her artistic and exquisite wedding cakes, 

opened a bakery one year ago and is surprised that business has been so slow. A consultant she hired to 

conduct market research has reported that the local population doesn't think of her shop as one they 

would visit on a daily basis but rather a place they'd visit if they were celebrating a special occasion. 

Which of the following strategies should Rita employ to increase her daily business?Health insurance 

premiums are very expensive. 

a. Make coupons available for a 25% discount on wedding, anniversary, or birthday cakes.   

b. Exhibit at the next Bridal Expo, having pieces her wedding cake available for tasting.   

c. Place a series of ads in the local newspaper that advertise the wide array of breads.   

d. Move the bakery to the other side of town. 

Probabilistic and Statistical Reasoning Questions 
Question 6 (5 points) 
Determine the correct relationship between the following two situations: 
(1) A fair coin is tossed 5 times. It lands heads-up exactly 3 times. 
(2) A fair coin is tossed 500 times. It lands heads-up exactly 300 times.The probability is greater than 
60% 

a. Situation (1) is much more likely than (2)   

b. Situation (1) is slightly more likely than (2)   

c. Situations (1) and (2) have about equal probabilities of occurring.   

d. Situation (2) is slightly more likely than (1)   

e. Situation (2) is much more likely than (1) 

 

Questions 7/8 (5 points each) 
Poker Chips. There are two black bags full of chips.  Bag (1) contains 70 red chips and 30 blue chips.  Bag 
(2) contains 30 red chips and 70 blue chips.  You do not know which is which.   
Question 7: For each trial, you shake the bag, pull a chip out, write down the color, then put it back.  You 
perform this procedure five times on one of the bags, and the following sequence results: R R R R b. 
Question 8: You perform this procedure 30 times on one of the bags, and you end up with 22 blues and 
8 reds. 
Which of the following statements is best? 
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a. The chips probably came from Bag 1   

b. The chips probably came from Bag 2   

c. The chips could have come from either bag (the probabilities are about equal) 

 

Question 9 (10 points) 

Indoshell Precision Machine Company machines hydrostatic transmission barrels.  To inspect these 

barrels, they place every 25th unit on an automated CMM (a highly-precise inspection instrument). The 

operator is instructed to run the CMM, and look at the readout.  If any of the parts’ features are out of 

tolerance, the operator is instructed to run the part through the CMM again before rejecting the 

part.  Using this procedure, assuming all other factors remain consistent, which type of error is more 

likely to result? 

a. Type I (failure to reject bad parts)   

b. Type II (failure to accept good parts)   

c. Both errors are equally likely   

d. Errors will not occur with this system 

Questions 10/11 (10 points each) 
In a set of data, Variance is defined conceptually as the average squared distance of each individual data 
point from the mean.  We square this distance, because if it was not squared then the total variance in a 
symmetric data set would always equate to zero.  Standard Deviation is defined as the square root of 
variance. 
(Question 10) If a data set contains values measured in inches, what units do mean and standard 
deviation for this data have, respectively? 

a. Inch, inch2   

b. No units, no units   

c. Inch, inch   

d. Inch, no units 

(Question 11) Choose the correct match for each value if you were to use them to evaluate a 

measurement system 

a. Mean: Accuracy 

Standard Deviation: Precision   

b. Mean: Precision 

Standard Deviation: Accuracy
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Measurement Lab 
Part 2 - Final Examination Short Answer Questions 

 

Instructions:   

1. Please write your name on the back of this exam and nowhere else. 

2. This exam is closed book.   

3. There are five questions for a total of 50 points.  There are five pages (including cover sheet). 

4. Answer each item to the best of your ability in the space provided.  Any writing outside of the 

box will be ignored.  You may use words or pictures as necessary.   

5. You have 30 minutes to complete the exam. 
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 Question 1 
Consider a simple physics experiment where a ball is dropped from a pre-determined position on a 
curved track (see figure below).  The ball is released from height x and allowed to roll down the track, as 
its gravitational potential energy is converted into kinetic energy.  To compute velocity, a stopwatch is 
used to time how long it takes the ball to travel 3 meters along the smooth concrete floor, marked at 
the points in the figure. 

 
 
This experiment is repeated 10 times by the same group of four students (one drops the ball, one uses 
the stopwatch, one observes, and one records data).  The students switch roles throughout the trials so 
they aren’t always doing the same job.  The total kinetic energy of the ball is computed for each trial by 

(   
 

 
   ), where m is the mass of the ball (a constant). The students compare the measured kinetic 

energy with the original gravitational potential energy (      ), and compute the difference.  The 
following is a sample of their data: 

 

Trial PE KE Difference 

1 4.91 J 4.64 J 0.27 J 

2 4.91 J 3.78 J 1.13 J 

3 4.91 J 4.98 J 0.07 J 

4 4.91 J 4.27 J 0.64 J 

 
(a) (5 points) There is variability in present this data; however, there is one row of data that is 
particularly problematic.  Which row is this, and what is the issue? 

 
 
 
 

 

  

1m 

height 

Start 

timing 

Stop 

timing 
3m 

length 
Ball 

stops 
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(b) (5 points) Using the same physics experiment, label each of the following factors based on how it 
might have affected the outcome of each trial.  Your choices are (c) consistent effect, (v) variable effect, 
or (n) no effect (write in the blank before the line). 
 

 Air resistance 

 Friction – ball on the ramp 

 Friction – ball across the floor 

 Measurement error – stopwatch 

 Differences in release height 

 Room temperature 

 Atmospheric pressure 

 Computational errors 

 Change in gravity due to height above sea level 

 Procedure – moving tasks among operators 

 

Question 2 
A digital micrometer is used to measure the thickness of an aluminum block produced by a machining 

process.  List the types of variability present under each of the following scenarios.  Your choices are (A) 

Repeatability Variation, (B) Reproducibility Variation, and (C) Process Variation (write only the letters in 

the box). 

(a) (5 points) A single inspector takes five measurements of the first block produced. 

 
 

(b) (5 points) A single inspector measures the first ten blocks to come out of the process.  Each is 

measured once.  

 

 

 

(c) (5 points) Three different inspectors measure 30 of the next 100 blocks to come out of the 

process. 
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Question 3 
 

Figures 1 and 2 below show the distribution of measurements taken from the same feature on a 

set of 70 aluminum blocks.  The measurements in Figure 1 were obtained by several inspectors 

each using a digital caliper to measure the feature, while those in Figure 2 were obtained using a 

Coordinate Measuring Machine (CMM).  (A CMM is a computer-controlled device used to obtain 

high-quality measurements, but it takes much longer to measure each part.)  Each block was 

measured exactly once under each measurement system. 

   
 FIGURE 1: MEASUREMENTS FROM CALIPERS/INSPECTORS FIGURE 2: MEASUREMENTS FROM CMM 

(a) (5 points) How do the two measurement systems compare in terms of accuracy and precision? 

 

 

(b) (3 points) The customer specified that 100% of the parts produced by this process must be 

measured.  If the tolerance is +/- 0.05 in., which measurement system should be used? 

 

 
(c) (3 points) Suppose the customer changes the tolerance to +/- 0.5 in.  Would you use a 

different measurement system than in (b)?  Explain.  

mean = 1.2519 in.      std. dev. = 0.0337 in. mean = 1.2469 in.      std. dev. = 0.0020 in. 
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Question 4 
(4 points) A manufacturer produces a component with a tolerance specification of +/- .025".  A new 

operator using a digital caliper has a repeatability standard deviation of .03".  Should measurements 

from this operator be used to make accept/reject decisions on the parts?  Explain. 

 

 

 

 

Question 5 
The NCAA College Basketball Rules, Section 16, Article 1, specifies the shape of the basketball:  "The ball 

shall be spherical. Spherical shall be defined as a round body whose surface at all points is equidistant 

from the center except at the approved black rubber ribs (channels and/or seams)." (emphasis 

added).  Article 8 further defines the size: "The circumference of the ball shall be within a maximum of 

30 inches and a minimum of 29½ inches."  You are the engineer at Spalding where the basketballs will 

be produced. 

(a) (5 points) Can the NCAA’s specifications be met as-stated?  If not, what needs to be changed? 

 

 

 

(b) (5 points) Assume a basketball from your factory was produced to the NCAA specification.  How 

would you verify that this basketball meets those requirements? 
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